Assessment of Benthic Macrofauna and Sediment Characteristics of Boracay Island, Philippines
DOI:
https://doi.org/10.5281/zenodo.11046358Keywords:
Benthic macrofauna, Abundance, Distribution, DiversityAbstract
Boracay island is a world-famous beach located in the Philippines. Its beaches are economically important due to its unique “white sand” characteristics popular for swimming and other recreational activities. Studies on macrobenthic organisms present in the area that are ecologically important and may play part in its unique sand, however, are still lacking. This study assessed the diversity, abundance, and distribution of the benthic macrofauna and the characteristics of the sediments in Stations 1, 2, and 3 of Boracay Island. Tide lines from various times of the day: high tide – morning (HTM), low tide (LT), high tide – evening (HTE); and at 0.5m water depth at high tide morning (0.5) was assessed. Overall, there are 474 individuals belonging to 5 classes, 10 families, and 10 genera collected from the three stations. The major taxa groups found are Bivalvia, Gastropoda, Malacostraca, Polychaeta, and Sipuncula. Donax sp. (wedge shell) was the most dominant species in the study area with 266 total individual counts. Among the three stations, Station 1 is the most diverse (H = 1.21) while Station 2 has the most abundant macrofaunal presence (relative abundance = 82.07%). In terms of area, HTE is the most diverse and abundant (H = 0.22; relative abundance = 60.97%). Most of the species found are known to be highly tolerant to a variety of conditions making it easier for them to adapt with less ideal conditions. The Armandia sp., found dominant in the area, is highly sensitive to marine pollution, making it an excellent indicator for future monitoring of Boracay Island.
References
Alongi, D. M. (1989). Ecology of Tropical soft-bottom benthos: a review with emphasis on emerging concepts. Review Biology, 37, 85–100.
Andersen, T. J., & Pejrup, M. (2011). Biological influences on sediment behavior and transport. In Elsevier eBooks (pp. 289–309). https://doi.org/10.1016/b978-0-12-374711-2.00217-5
Ansell, A. D., & Lagardère, F. (1980). Observations on the biology of Donax trunculus and D. vittatus at Ile d'Oleron (French Atlantic coast). Marine Biology, 57(4), 287–300. https://doi.org/10.1007/bf00387572
Barboza, F. R., & Defeo, O. (2015). Global diversity patterns in sandy beach macrofauna: a biogeographic analysis. Scientific Reports, 5(1). https://doi.org/10.1038/srep14515
Brown, A. C., & McLachlan, A. (1990). Ecology of Sandy Shores. 328 pp. Amsterdam: Elsevier.
Burone, L., Muñiz, P., Pires-Vanin, A. M. S., & Rodrigues, M. (2003). Spatial distribution of organic matter in the surface sediments of Ubatuba Bay (Southeastern - Brazil). Anais Da Academia Brasileira De Ciencias, 75(1), 77–80. https://doi.org/10.1590/s0001-37652003000100009
Chew, S. F., Peng, K. W., Low, W. P., & Ip, Y. K. (1994). Differences in the responses between tissues of the body wall and the internal organs of Phascolosoma arcuatum (Sipuncula) to changes in salinity. Comparative Biochemistry and Physiology Part A: Physiology. https://doi.org/10.1016/0300-9629(94)90286-0
Cochran, K. J., Bokuniewicz, Henry J., & Yager, P. L. (2019). Encyclopedia of Ocean Sciences: A derivative of the Encyclopedia of Ocean Sciences (3rd ed.). Academic Press.
Defeo, O., Barboza, C. a. M., Barboza, F. R., Aeberhard, W. H., Cabrini, T. M.,Cardoso, R. S., Ortega, L., Skinner, V. B., & Worm, B. (2007). Aggregate patterns of macrofaunal diversity: An interocean comparison. Global Ecology and Biogeography, 26(7), 823–834. https://doi.org/10.1111/geb.12588
Defeo, O., McLachlan, A., Schoeman, D. S., Schlacher, T. A., Dugan, J. E., Jones, A. R., Lastra, M., & Scapini, F. (2009). Threats to sandy beach ecosystems: A review. Estuarine Coastal and Shelf Science, 81(1), 1–12. https://doi.org/10.1016/j.ecss.2008.09.022
Defeo, O., & McLachlan, A. (2013). Global patterns in sandy beach macrofauna: Species richness, abundance, biomass and body size. Geomorphology, 199, 106–114. https://doi.org/10.1016/j.geomorph.2013.04.013
De La Cruz, M. J. L., Flores, J. R. P. V., Magramo, M., Madas, C., & Terunez, M. (2012). Macrobenthic Composition of Sea Water Associated with Seagrass in East and West Portions of the Igang Bay, Nueva Valencia, Guimaras. JPAIR Multidisciplinary Research, 7(1), 106–118. https://doi.org/10.7719/jpair.v7i1.156
De La Huz, R., Lastra, M., & López, J. (2002). The influence of sediment grain size on burrowing, growth and metabolism of Donax trunculus L. (Bivalvia: Donacidae). Journal of Sea Research, 47(2), 85–95. https://doi.org/10.1016/s1385-1101(02)00108-9
Dugan, J. E., Jaramillo, E., Hubbard, D. A., Contreras, H., & Duarte, C. (2004). Competitive interactions in macroinfaunal animals of exposed sandy beaches. Oecologia, 139(4), 630–640. https://doi.org/10.1007/s00442-004-1547-x
Ellingsen, K. (2002). Soft-sediment benthic biodiversity on the continental shelf in relation to environmental variability. Marine Ecology Progress Series, 232, 15–27. https://doi.org/10.3354/meps232015
Fenchel, T., & Finlay, B. J. (1995). Ecology and Evolution in Anoxic Worlds. Oxford University Press, USA.
Ferrero-Vicente, L. M., Loya-Fernández, A., Marco-Méndez, C., Martinez-Garcia, E., & Sánchez-Lizaso, J. L. (2011). Soft–bottom sipunculans from San Pedro del Pinatar (Western Mediterranean): influence of anthropogenic impacts and sediment characteristics on their distribution. Animal Biodiversity and Conservation, 34(1), 101–111. https://doi.org/10.32800/abc.2011.34.0101
Frusher, S., Giddins, R. L., & Smith, T. J. (1994). Distribution and Abundance of Grapsid Crabs (Grapsidae) in a Mangrove Estuary: Effects of Sediment Characteristics, Salinity Tolerances, and Osmoregulatory Ability. Estuaries, 17(3), 647. https://doi.org/10.2307/1352412
Giere, O. (2009). Meiobenthology : the microscopic fauna in aquatic sediments. In Springer eBooks. http://lib.ugent.be/en/catalog/rug01:001332515
Grant, J., & Daborn, G. (1994). The effects of bioturbation on sediment transport on an intertidal mudflat. Netherlands Journal of Sea Research 32 (1), 63–72.
Gray, J. S. (1974). Animal-sediment relationships. Oceanography and Marine Biology: An Annual Review, 12:223–261.
Holme, N. A., & McIntyre, A. D. (1984). Methods for the Study of Marine Benthos. 2nd Editions, 387 pp. Blackwell.
Holmer, M., Wildish, D. J., & Hargrave, B. T. (2005). Organic Enrichment from Marine Finfish Aquaculture and Effects on Sediment Biogeochemical Processes. In Springer eBooks (pp. 181–206). https://doi.org/10.1007/b136010
Incera, M., Cividanes, S., López, J., & Costas, R. C. (2003). Role of hydrodynamic conditions on quantity and biochemical composition of sediment organic matter in sandy intertidal sediments (NW Atlantic coast, Iberian Peninsula). Hydrobiologia, 497(1/3), 39–51. https://doi.org/10.1023/a:1025405519829
Khan, S. a. R., Ansari, K. G. M. T., & Lyla, P. S. (2012). Organic matter content of sediments in continental shelf area of southeast coast of India. Environmental Monitoring and Assessment, 184(12), 7247–7256. https://doi.org/10.1007/s10661-011-2494-8
Koike, I., & Mukai, H. (1983). Oxygen and inorganic nitrogen contents and fluxes in burrows of the shrimps Callianassa japonica and Upogebia major. Marine Ecology Progress Series, 12, 185–190. https://doi.org/10.3354/meps012185
Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T. B., Quintana, C. O., & Banta, G. T. (2012). What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series, 446, 285–302. https://doi.org/10.3354/meps09506
Lastra, M., Dugan, J. E., & Hubbard, D. M. (2002). Burrowing and Swash Behavior of the Pacific Mole Crab Hippa pacifica (Anomura, Hippidae) in Tropical Sandy Beaches. Journal of Crustacean Biology, 22(1), 53–58. https://doi.org/10.1163/20021975-99990208
Leber, K. M. (1982). Bivalves (Tellinacea: Donacidae) on a North Carolina Beach: Contrasting Population Size Structures and Tidal Migrations. Marine Ecology Progress Series, 7, 297–301. https://doi.org/10.3354/meps007297
Leopardas, V., Uy, W. H., & Nakaoka, M. (2014). Benthic macrofaunal assemblages in multispecific seagrass meadows of the southern Philippines: Variation among vegetation dominated by different seagrass species. Journal of Experimental Marine Biology and Ecology, 457, 71–80. https://doi.org/10.1016/j.jembe.2014.04.006
Lercari, D., & Defeo, O. (2003). Variation of a sandy beach macrobenthic community along a human-induced environmental gradient. Estuarine, Coastal and Shelf Science, 58, 17–24. https://doi.org/10.1016/s0272-7714(03)00043-x
Lercari, D., & Defeo, O. (2006). Large-scale diversity and abundance trends in sandy beach macrofauna along full gradients of salinity and morphodynamics. Estuarine, Coastal and Shelf Science, 68(1–2), 27–35. https://doi.org/10.1016/j.ecss.2005.12.017
Limates, V. G., Cuevas, V. C., & Benigno, E. (2016). Water quality and nutrient loading in the coastal waters of Boracay Island, Malay, Aklan, Central, Philippines. Journal of Environmental Science and Management, 15–29. https://doi.org/10.47125/jesam/2016_sp2/0
Limates, V. G., Cuevas, V. C., Tajolosa, M. a. T., & Benigno, E. (2016). Phytoplankton abundance and distribution in selected sites of Boracay Island, Malay, Aklan, Central Philippines. Journal of Environmental Science and Management, 1–14. https://doi.org/10.47125/jesam/2016_sp2/01
Lindegarth, M., & Hoskin, M. G. (2001). Patterns of distribution of macro-fauna in different types of estuarine, soft sediment habitats adjacent to urban and non-urban areas. Estuarine, Coastal and Shelf Science, 52(2), 237–247. https://doi.org/10.1006/ecss.2000.0741
Llansó, R. J. (1991). Tolerance of low dissolved oxygen and hydrogen sulfide by the polychaete Streblospio benedicti (Webster). Journal of Experimental Marine Biology and Ecology, 153(2), 165–178. https://doi.org/10.1016/0022-0981(91)90223-j
Maguire, G. S., Miller, K. K., Weston, M. A., & Young, K. (2011). Being beside the seaside: Beach use and preferences among coastal residents of south-eastern Australia. Ocean & Coastal Management, 54(10), 781–788. https://doi.org/10.1016/j.ocecoaman.2011.07.012
McLachlan, A. (1983). Sandy Beach Ecology - A Review. In Springer eBooks (pp. 321–380). https://doi.org/10.1007/978-94-017-2938-3_25
McLachlan, A., & Brown, A. S. (2006). Sandy-beach Invertebrates. In Elsevier eBooks (pp. 65–90). https://doi.org/10.1016/b978-012372569-1/50005-7
McLachlan, A., & Defeo, O. (2017). The Ecology of Sandy Shores (3rd ed.) Academic Press.
McLachlan, A., Dye, A., & Van Der Ryst, P. (1979). Vertical gradients in the fauna and oxidation of two exposed sandy beaches. South African Journal of Zoology, 14(1), 43–47. https://doi.org/10.1080/02541858.1979.11447646
Meysman, F. J. R., Galaktionov, O., & Middelburg, J. J. (2005). Irrigation patterns in permeable sediments induced by burrow ventilation: a case study of Arenicola marina. Marine Ecology Progress Series, 303, 195–212. https://doi.org/10.3354/meps303195
Morton, B. (1994). Hong Kong’s coral communities: Status, threats and management plans. Marine Pollution Bulletin, 29(1–3), 74–83. https://doi.org/10.1016/0025-326x(94)90429-4
Morton, B. (1997). The Marine Flora and Fauna of Hong Kong and Southern China IV. Hong Kong University Press.
Neuberger-Cywiak, L., Achituv, Y., & Mizrahi, L. (1989). The ecology of Donax trunculus Linnaeus and Donax semistriatus Poli from the Mediterranean coast of Israel. Journal of Experimental Marine Biology and Ecology, 134(3), 203–220. https://doi.org/10.1016/0022-0981(89)90070-1
Nowell, A. R. M., Jumars, P. A., & Eckman, J. E. (1981). Effects of biological activity on the entrainment of marine sediments. Marine Geology, 42(1–4), 133–153. https://doi.org/10.1016/0025-3227(81)90161-4
Peng, C., Yan, X., Wang, X., Huang, Y., Jiang, L., Yuan, P., & Wu, Q. (2021). Release of odorants from sediments of the largest drinking water reservoir in Shanghai: Influence of pH, temperature, and hydraulic disturbance. Chemosphere, 265, 129068. https://doi.org/10.1016/j.chemosphere.2020.129068
Rahim, H. A., Shuhaida, S., & Yahya, K. (2021). Rapid baseline assessment of crab abundance and species richness in mangroves using a video recording method. IOP Conference Series. https://doi.org/10.1088/1755-1315/736/1/012056
Saes, R. V. S. T., Moreira, L. B., Davanso, M. B., Perina, F. C., & De Souza Abessa, D. M. (2018). Developing a protocol whole sediment toxicity testing with the polychaete Armandia agilis. Ecotoxicology and Environmental Contamination, 13(2), 85–97. https://doi.org/10.5132/eec.2018.02.11
Schlacher, T., Schoeman, D., Dugan, J., Lastra, M., Jones, A., Scapini, F., & McLachlan, A. (2008). Sandy beach ecosystems: key features, sampling issues, management challenges and climate change impacts. Marine Ecology, 70–86. http://obpa-nc.org/DOI-AdminRecord/0067932-0067952.pdf
Snelgrove, P. V. R., Soetaert, K., Solan, M., Thrush, S. F., Wei, C., Danovaro, R., Fulweiler, R. W., Kitazato, H., Ingole, B., Norkko, A., Parkes, R. J, & Volkenborn, N. (2018). Global carbon cycling on a heterogeneous seafloor. Trends in Ecology and Evolution, 33(2), 96–105. https://doi.org/10.1016/j.tree.2017.11.004
Soto, E., Quiroga, E., Ganga, B., & Alarcón, G. (2017). Influence of organic matter inputs and grain size on soft-bottom macrobenthic biodiversity in the upwelling ecosystem of central Chile. Marine Biodiversity. 47. 433-450. 10.1007/s12526-016-0479-0.
Varadharajan, D., Soundarap, P, I., & Pushparajan, N. (2013). Effect of physico-chemical parameters on crabs biodiversity. Marine Science Research and Development, 3(1). https://doi.org/10.4172/2155-9910.1000116
Waska, H., Greskowiak, J., Ahrens, J., Beck, M., Ahmerkamp, S., Böning, P., Brumsack, H., Degenhardt, J., Ehlert, C., Engelen, B., Grünenbaum, N., Holtappels, M., Pahnke, K., Marchant, H. K., Massmann, G., Meier, D., Schnetger, B., Schwalfenberg, K., Simon,H., Dittmar, T. (2019). Spatial and temporal patterns of pore water chemistry in the Intertidal zone of a high energy beach. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00154
Watling, L. (2019). Macrofauna. Encyclopedia of ocean sciences, 728–734. https://doi.org/10.1016/b978-0-12-409548-9.11069-3
Wear, S. L., Acuña, V., McDonald, R. I., & Font, C. (2021). Sewage pollution, declining ecosystem health, and cross-sector collaboration. Biological Conservation, 255, 109010. https://doi.org/10.1016/j.biocon.2021.109010
Wibowo, Y. S., Kesumadewi, A. A. I., & Suwastika, A. A. N. G. (2021). Soil Macrofauna Community Structure and Biodiversity on Organic and Conventional Vegetable Land in Bedugul, Bali Island. International Journal of Education and Research, 9(7). https://www.ijern.com/journal/2021/July-2021/09.pdf
Wittmann, A. C., & Pörtner, H. (2013). Sensitivities of extant animal taxa to ocean acidification. Nature Climate Change, 3(11), 995–1001. https://doi.org/10.1038/nclimate1982
Wright, L. D., & Short, A. D. (1984). Morphodynamic variability of surf zones and beaches: A synthesis. Marine Geology, 56(1–4), 93–118. https://doi.org/10.1016/0025-3227(84)90008-2
Woodin, S. A. (1974). Polychaete Abundance Patterns in a Marine Soft‐Sediment Environment: The Importance of Biological Interactions. Ecological Monographs, 44(2), 171–187. https://doi.org/10.2307/1942310
Xia, J., Han, Y., Tan, J., Abarike, G. A., & Song, Z. (2022). The characteristics of organic carbon in the offshore sediments surrounding the Leizhou Peninsula, China. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.648337
Yusseppone, M. S., Rocchetta, I., Sabatini, S. E., Luquet, C. M., Del Carmen Ríos De Molina, M., Held, C., & Abele, D. (2018). Inducing the Alternative Oxidase Forms Part of the Molecular Strategy of Anoxic Survival in Freshwater Bivalves. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.00100
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.