Aquaculture chemotherapy in the Philippines: A review

Authors

DOI:

https://doi.org/10.5281/zenodo.15255621

Keywords:

Antibiotics, Aquaculture, Chemicals, Drugs, Philippines

Abstract

Aquaculture plays a crucial role in global food security, yet it faces mounting challenges in promoting sustainable and responsible practices. In the Philippines, while the aquaculture industry significantly contributes to the economy, its reliance on chemicals—particularly antibiotics—poses serious risks to public health and the environment. The industry's sustainable development is hindered by a lack of transparent regulatory oversight and limited access to eco-friendly alternatives. This review assesses the current state of chemical use in Philippine aquaculture, focusing on key species and related challenges. It also examines the effectiveness of the regulatory framework governing chemical use, explores emerging drug alternatives, and suggests strategies to improve regulatory oversight and encourage the adoption of environmentally sustainable practices. The Philippine aquaculture industry, dominated by seaweeds, milkfish, and tilapia, is rapidly expanding. However, this growth is often accompanied by increased chemical usage, including antibiotics, antiparasitic agents, antifungal agents, disinfectants, vaccines, inorganic fertilizers, and more. Despite existing regulations, enforcement and public transparency remain problematic. The excessive use of chemicals in Philippine aquaculture poses significant threats to both public health and environmental sustainability. Urgent action is required to enhance regulatory oversight, encourage the use of eco-friendly alternatives, and ensure the industry's long-term viability. To address these challenges, it is recommended that the government enforce stricter regulations and monitoring mechanisms for chemical use in aquaculture, invest in research and development of sustainable alternatives, raise public awareness about the risks of chemical use, and collaborate with international organizations to share best practices and develop harmonized standards.

References

Albances, J. O., & Traifalgar, R. F. (2022). Probiotic bacteria isolated from saline tilapia green water culture system inhibit gut colonization and prevent infection of Aeromonas hydrophila in the juvenile Nile tilapia (Oreochromis niloticus). Egyptian Journal of Aquatic Biology and Fisheries, 26(2), 841–857. https://doi.org/10.21608/ejabf.2022.234763

Albarico, F. P. J., & Pador, E. L. (2019). Chemical and microbial analyses of organic milkfish farm in Negros Occidental, Philippines. Asia Pacific Journal of Multidisciplinary Research, 7(2), 41-46.

Apines‐Amar, M. J. S., Caipang, C. M. A., Lopez, J. D. M., Murillo, Ma. N. A., Amar, E. C., Piñosa, L. A. G., & Pedroso, F. L. (2022). Proteus mirabilis (MJA 2. 6S) from saline- tolerant tilapia exhibits potent antagonistic activity against Vibrio spp., enhances immunity, controls NH3 levels and improves growth and survival in juvenile giant tiger shrimp, Penaeus monodon. Aquaculture Research, 53(16), 5510–5520. https://doi.org/10.1111/are.16033

Arnaiz, M. T., Coloso, R. M., & Catacutan, M. R. (2015). Withdrawal periods of antibiotics, oxytetracycline, and oxolinic acid, in fish species cultured in the tropics. In R. M. Coloso, M. R. Catacutan, & M. T. Arnaiz (Eds.), Important findings and recommendations on chemical use in aquaculture in Southeast Asia (pp. 11-15). Aquaculture Department, Southeast Asian Fisheries Development Center.

Baticados, M., Lavilla-Pitogo, C., Cruz-Lacierda, E., De La Pena, L., & Sunaz, N. (1990). Studies on the chemical control of luminous bacteria Vibrio harveyi and V. splendidus isolated from diseased Penaeus monodon larvae and rearing water. Diseases of Aquatic Organisms, 9(2), 133–139. https://doi.org/10.3354/dao009133

Baticados, M. C. L., & Paclibare, J. O. (1992). The use of chemotherapeutic agents in aquacsulture in the Philippines (M. Shariff & R. P. Subasinghe (eds.)) [Conference paper]. Asian Fisheries Society, Fish Health Section.

Bureau of Agriculture and Fisheries Standards (BAFS). (2021). Philippine National Standard. Seaweeds- Code of Good Aquaculture Practices (GAqP) (PNS/BAFS 208:2021). Quezon City, Philippines, pp 1-63.

Bureau of Agriculture and Fisheries Standards (BAFS). (2014). Philippine National Standard. Code of good aquaculture practices (GAqP) (PNS/BAFS 135:2014). BAFS Building, BPI Compound, Visayas Avenue, Diliman, Quezon City, Philippines, pp 1-28.

Bureau of Fisheries and Aquatic Resources (BFAR). (2023). Philippine fisheries profile 2022. PCA Compound, Elliptical Road, Quezon City Philippines.

Boyd, C. E., McNevin, A. A., & Tucker, C. S. (2019). Resource use and the environment. In J. S. Lucas, P. C. Southgate & C. S. Tucker (Eds.), Aquaculture: Farming aquatic animals and plants (pp. 93-112). .John Wiley & Sons Ltd.

Catacutan, M. R., Coloso, R. M., & Arnaiz, M. T. (2015). Survey of antibiotic and pesticide residues in aquaculture products in the Philippines. In R. M. Coloso, M. R. Catacutan, & M. T. Arnaiz (Eds.), Important findings and recommendations on chemical use in aquaculture in Southeast Asia (pp. 5-10). Aquaculture Department, Southeast Asian Fisheries Development Center, pp. 5-10.

Coloso, R. M., Catacutan, M. R., & Arnaiz, M. T. (2015). Important findings and recommendations on chemical use in aquaculture in Southeast Asia. Aquaculture Department, Southeast Asian Fisheries Development Center.

Cruz-Lacierda, E. R., De la Peña, L. D., & Lumanlan-Mayo, S. C. (2000). The use of chemicals in aquaculture in the Philippines. In J. R. Arthur, C. R. Lavilla-Pitogo, & R. P. Subasinghe (Eds.), Use of chemicals in aquaculture in Asia: Proceedings of the meeting on the use of chemicals in aquaculture in Asia (pp. 155-184). Aquaculture Department, Southeast Asian Fisheries Development Center.

Das, S., Mondal, K., & Haque, S. (2017). A review on application of probiotic, prebiotic and synbiotic for sustainable development of aquaculture. J Entomol Zool Stud 2017;5(2):422-429.

Defoirdt, T., Sorgeloos, P., & Bossier, P. (2011). Alternatives to antibiotics for the control of bacterial disease in aquaculture. Current Opinion in Microbiology, 14(3), 251–258. https://doi.org/10.1016/j.mib.2011.03.004

De Silva, S. S. (2012). Aquaculture: A newly emergent food production sector-and perspectives of its impacts on biodiversity and conservation. Biodiversity and Conservation, 21(12), 3187–3220. https://doi.org/10.1007/s10531-012-0360-9

Diana, J. S., Egna, H. S., Chopin, T., Peterson, M. S., Cao, L., Pomeroy, R., Verdegem, M., Slack, W. T., Bondad-Reantaso, M. G., & Cabello, F. (2013). Responsible aquaculture in 2050: Valuing local conditions and human innovations will be key to success. BioScience, 63(4), 255–262. https://doi.org/10.1525/bio.2013.63.4.5

Doroteo, A. M., Pedroso, F. L., Lopez, J. D. M., & Apines-Amar, M. J. S. (2018). Evaluation of potential probiotics isolated from saline tilapia in shrimp aquaculture. Aquaculture International, 26(4), 1095–1107.

https://doi.org/10.1007/s10499-018-0270-2

Dumandan, N., Tumambing, C., Arriola, I. D., & Acda, R. (2024). Assessment of the functional properties of probiotic-loaded alginate beads and their effects on the growth performance of juvenile Nile tilapia (Oreochromis niloticus). SciEnggJ, 17(Supplement), 194–201. https://doi.org/10.54645/202417SupPSB-54

Food and Agriculture Organization (FAO). (2024). Fishery and aquaculture statistics-yearbook 2021. FAO Yearbook of Fishery and Aquaculture Statistics. Rome. https://doi.org/10.4060/cc9523en

Food and Agriculture Organization/World Health Organization (FAO/WHO). (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, Food and Agriculture Organization of the United Nations/World Health Organization Joint Report, Córdoba, Argentina.

Food and Drug Administration (FDA). (2024). Approved Aquaculture Drugs. U.S. Food and Drugs Administration.

Garcia, K. B., Malabrigo, P. L., & Gevaña, D. T. (2014). Philippines’ mangrove ecosystem: Status, threats and conservation. In I. Faridah-Hanum, A. Latiff, K. R. Hakeem, & M. Ozturk (Eds.), Mangrove Ecosystems of Asia (pp. 81–94). Springer New York. https://doi.org/10.1007/978-1-4614-8582-7_5

Grisez, L., & Tan, Z. (2005). Vaccine development for Asian aquaculture. In P. J. Walker, R. G. Lester & M. G. Bondad-Reantaso (Eds.), Diseases in Asian Aquaculture V (pp. 483-494). Fish health section, Asian Fisheries Society.

Hancz, C. (2022). Application of probiotics for environmentally friendly and sustainable aquaculture: A Review. Sustainability, 14(22), 15479. https://doi.org/10.3390/su142215479

Holmes, M., & Hill, R. E. (2007). International harmonisation of regulatory requirements. Revue cientifique et technique-Office international des épizooties, 26(2), 415-420.

Hortillosa, E. M., Amar, M. J. A., Nuñal, S. N., Pedroso, F. L., & Ferriols, V. M. E. N. (2022). Effects of putative dietary probiotics from the gut of milkfish (Chanos chanos) on the growth performance and intestinal enzymatic activities of juvenile Nile tilapia (Oreochromis niloticus). Aquaculture Research, 53(1), 98–108.

https://doi.org/10.1111/are.15556

Karp, B. E., Leeper, M. M., Chen, J. C., Tagg, K. A., Francois Watkins, L. K., & Friedman, C. R. (2020). Multidrug-resistant Salmonella serotype anatum in travelers and seafood from Asia, United States. Emerging Infectious Diseases, 26(5), 1030–1033.

https://doi.org/10.3201/eid2605.190992

Langaoen A. F., Manzano V. J. V., Requilman E. M. R., Tabardillo J. M., Maningas M. B. B., Calugay R. J., (2018). Antibiotic-resistant bioluminescent vibrios from Philippine aquacultured Chanoschanos and Oreochromis niloticus. AACL Bioflux 11(2):505-515.

Lavilla-Pitogo, C. R., Catacutan, M. C. & Amar, E. C. (2011). Healthy and wholesome aquaculture. In B. O. Acosta, R. M. Coloso, E. G. T. de Jesus-Ayson, & J. D. Toledo (Eds.), Sustainable aquaculture development for food security in Southeast Asia towards 2020. Proceedings of the regional technical consultation on sustainable aquaculture development in Southeast Asia towards 2020 (pp. 17-33). Tigbauan, Iloilo, Philippines: SEAFDEC Aquaculture Department.

Legario, F. S., Choresca, C. H., Turnbull, J. F., & Crumlish, M. (2020). Isolation and molecular characterization of streptococcal species recovered from clinical infections in farmed Nile tilapia (Oreochromis niloticus ) in the Philippines. Journal of Fish Diseases, 43(11), 1431– 1442. https://doi.org/10.1111/jfd.13247

Merrifield, D. L., Dimitroglou, A., Foey, A., Davies, S. J., Baker, R. T. M., Bøgwald, J., Castex, M., & Ringø, E. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302(1–2), 1–18.

https://doi.org/10.1016/j.aquaculture.2010.02.007

Muyong, J. S., & Tahiluddin, A. B. (2024). Interaction of nutrient enrichment and farming method on performance of the red seaweed Kappaphycus alvarezii. Aquatic Botany, 191, 103743. https://doi.org/10.1016/j.aquabot.2023.103743

Nuñal, S. N., Jane M. Monaya, K., Rose T. Mueda, C., & Mae Santander-De Leon, S. (2023). Microbiological quality of oysters and mussels along its market supply chain. Journal of Food Protection, 86(3), 100063.

https://doi.org/10.1016/j.jfp.2023.100063

Pakingking, R., Española, J. G., Palma, P., & Usero, R. (2022). Motile aeromonads recovered from tilapia (Oreochromis niloticus) cultured in earthen ponds in the Philippines: Assessment of antibiotic susceptibility and multidrug resistance to selected antibiotics. Israeli Journal of Aquaculture - Bamidgeh, 74 (July):1–11. https://doi.org/10.46989/001c.37010

Pelić, D. L., Radosavljević, V., Pelić, M., Baloš, M. Ž., Puvača, N., Jug-Dujaković, J., & Gavrilović, A. (2024). Antibiotic residues in cultured fish: Implications for food safety and regulatory concerns. Fishes, 9(12), 484. https://doi.org/10.3390/fishes9120484

Peralta, E. M., & Andalecio, M. N. (2011). Microbiological quality of oyster (Crassostrea sp.) and mussel (Perna viridis) in selected growing areas in Western Visayas, Philippines. Philippine J. Nat. Sci, 16, 1-8.

Pineda-Cortel, M. R. B., Del Rosario, E. H., & Villaflores, O. B. (2024). Use of veterinary medicinal products in the Philippines: Regulations, impact, challenges, and recommendations. Journal of Veterinary Science, 25(2), e33. https://doi.org/10.4142/jvs.23134

Philippine Statistics Authority (PSA). (2023). Fisheries statistics of the Philippines 2023. PSA CVEA Building, East Avenue, Diliman Quezon City, Philippines.

Pleto, J. V. R., Arboleda, M. D. M., Migo, V. P., & Simbahan, J. F. (2021). Impacts of probiotics on water quality and milkfish production (Chanos chanos) grown in polluted ponds of Marilao and Meycauayan, Bulacan. Science Diliman, 33(1).

Primavera, J. H. (2006). Overcoming the impacts of aquaculture on the coastal zone. Ocean & Coastal Management, 49(9–10), 531–545.

https://doi.org/10.1016/j.ocecoaman.2006.06.018

Primavera, J., Lavilla-Pitogo, C. R., Ladja, J. M., & de la Peña, M. R. (1993). A survey of chemical and biological products used in intensive prawn farms in the Philippines. Marine Pollution Bulletin, 26(1),35-40.

https://doi.org/10.1016/0025-326X(93)90595-B

Regidor, S. E. Somga, S. S. and Paclibare, J. O. (2020). Status of aquaculture component of the Philippine national action plan on antimicrobial resistance. Asian Fisheries Science, 33(Special Understanding Antimicrobial Resistance in Aquaculture), 97-106.

https://doi.org/10.33997/j.afs.2020.33.s1.014

Revilleza, M. E. P., Salamat, S. E. A., & Paraso, M. G. V. (2021). Antibacterial residues in cultured Nile tilapia (Oreochromis niloticus) in the lakeshore barangays of Los Baños, Laguna, Philippines. Philippine Journal of Veterinary Medicine, 58(2) 231-238.

Saloma, C. P., Penir, S. M. U., Azanza, J. M. R., Dela Peña, L. D., Usero, R. C., Cabillon, N. A. R., Bilbao, A. D. P., & Amar, E. C. (2019). Draft genome sequence of multidrug-resistant Vibrio parahaemolyticus strain PH698, infecting penaeid shrimp in the Philippines. Microbiology Resource Announcements, 8(47), e01040-19.

Samson, J., Quiazon, K. M., & Choresca, C. (2020). Application of probiotic Bacillus spp. isolated from african nightcrawler (Eudrilus eugenia) on Nile tilapia (Oreochromis niloticus L.). https://doi.org/10.1101/2020.03.08.982819

Schar, D., Klein, E. Y., Laxminarayan, R., Gilbert, M., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in aquaculture. Scientific Reports, 10(1) 21878.

Sharifuzzaman, S. M., & Austin, B. (2017). Probiotics for disease control in aquaculture. In B. Austin & A. Newaj‐Fyzul (Eds.), Diagnosis and Control of Diseases of Fish and Shellfish (1st ed., pp. 189–222). Wiley.

https://doi.org/10.1002/9781119152125.ch8

Solidum, J. M., Vera, M. J. D. D., Abdulla, A.-R. D. C., Evangelista, J. H., & Nerosa, M. J. A. V. (2013). Quantitative analysis of lead, cadmium and chromium found in selected fish marketed in Metro Manila, Philippines. International Journal of Environmental Science and Development, 4(2), 207–211.

https://doi.org/10.7763/IJESD.2013.V4.336

Somga, S. S., Somga, J. R. and Regidor, S. E. (2012). Use of veterinary medicines in Philippine aquaculture: current status. In M.G. Bondad-Reantaso, J.R. Arthur & R.P. Subasinghe (Eds.), Improving biosecurity through prudent and responsible use of veterinary medicines in aquatic food production (pp. 69-82). FAO Fisheries and Aquaculture Technical Paper No. 547. Rome, FAO. 207 pp.

https://www.fao.org/3/ba0056e/ba0056e.pdf

Subasinghe, R. P., Barg, U., & Tacon, A. (2000). Chemicals in Asian aquaculture: need, usage, issues and challenges. In J. R. Arthur, C. R. Lavilla-Pitogo, & R. P. Subasinghe (Eds.), Use of chemicals in aquaculture in Asia: Proceedings of the meeting on the use of chemicals in aquaculture in Asia 20-22 May 1996, Tigbauan, Iloilo, Philippines (pp. 1-5). Tigbauan, Iloilo, Philippines. Aquaculture Department, Southeast Asian Fisheries Development Center. http://hdl.handle.net/10862/612

Tabo, N. A., Ramirez, V. B., Tabo, H. A. L., & Gloriani, N. G. (2015). Occurrence and antimicrobial resistance of pathogenic vibrios isolated from green mussel, Perna viridis L. 1758 in Bacoor Bay, Cavite, Philippines. Acta Medica Philippina, 49(4) 39-44.

https://doi.org/10.47895/amp.v49i4.898

Tacon, A. and Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded feeds: Trends and future prospects. Aquaculture 285(1–4), 146- 158. https://doi.org/10.1016/j.aquaculture.2008.08.015

Tahiluddin, A., & Terzi, E. (2021a). An overview of fisheries and aquaculture in the Philippines. Journal of Anatolian Environmental and Animal Sciences, 6(4), 475-486.

https://doi.org/10.35229/jaes.944292

Tahiluddin, A. B., & Terzi, E. (2021b). A review of reported bacterial diseases and antibiotic use in tilapia culture in the Philippines. Acta Natura et Scientia, 2(2), 141-147.

https://doi.org/10.29329/actanatsci.2021.350.08

Tahiluddin, A. B., Nuñal, S. N., Luhan, M. R. J., & Santander–de Leon, S. M. S. (2021a). Vibrio and heterotrophic marine bacteria composition and abundance in nutrient-enriched Kappaphycus striatus. Philippine Journal of Science, 150(6b), 1751-1763.

https://doi.org/10.56899/150.6B.12

Tahiluddin, A. B., Diciano E. J., Robles, R. J. F., & Akrim, J. P. (2021b). Influence of different concentrations of ammonium phosphate on nitrogen assimilation of red seaweed Kappaphycus striatus. Journal of Biometry Studies, 1(2), 39-44.

https://doi.org/10.29329/JofBS.2021.349.01

Tahiluddin, A., Irin, S. S., Jumadil, K., Muddihil, R., & Terzi̇, E. (2022a). Use of brown seaweed extracts as bio-fertilizers and their effects on the carrageenan yield, ice-ice disease occurrence, and growth rate of the red seaweed Kappaphycus striatus. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 32(2), 436–447.

https://doi.org/10.29133/yyutbd.1071446

Tahiluddin, A. B., Nuñal, S. N., & Santander–de Leon, S. M. S. (2022b). Inorganic nutrient enrichment of seaweed Kappaphycus: Farmers’ practices and effects on growth and ice-ice disease occurrence. Regional Studies in Marine Science, 55, 102593.

https://doi.org/10.1016/j.rsma.2022.102593

Tahiluddın, A., Andon, A., & Burahim, M. (2022c). Effects of Acadian Marine Plant Extract Powder (AMPEP) and ammonium phosphate as nutrient enrichment on the ice-ice disease occurrence and growth performance of seaweed Kappaphycus striatus. MedFAR., 5(2), 37-46.

Tahiluddin, A. B., & Damsik, S. U. (2023). Prevalence of ice-ice disease in Kappaphycus spp. and Eucheuma denticulatum farms in Sibutu, Tawi-Tawi, Philippines. Aquaculture Studies, 23(5). https://doi.org/10.4194/AQUAST1137

Tahiluddin, A. B., Imbuk, E. S., Sarri, J. H., Mohammad, H. S., Ensano, F. N. T., Maddan, M. M., & Cabilin, B. S. (2023). Eucheumatoid seaweed farming in the southern Philippines. Aquatic Botany, 189, 103697. https://doi.org/10.1016/j.aquabot.2023.103697

Tahiluddin, A. B., & Eldani-Tahiluddin, M. H. S. (2024). Ice-ice disease in cultivated eucheumatoid seaweeds: The perspectives of farmers. European Journal of Phycology, 59(4), 423–435. https://doi.org/10.1080/09670262.2024.2383623

Tahiluddin, A.B., Roleda, M.Y. (2025) Current status of eucheumatoid seaweed farming in Tawi-Tawi, Philippines. In: Rathore, M.S., Mantri V.A. (eds) Biotechnology interventions to aid commercial seaweed farming. Springer pp 93-122. https://doi.org/10.1007/978-981-97-9427-05

Temario, E. E., Baure, J. G., Mameloco, E. J. G., Cadiz, R. E., & Traifalgar, R. F. M. (2022). Inhibitory activity of probiotic Bacillus subtilis BF12 against Vibrio parahaemolyticus infection and its growth-promoting effects on juvenile Penaeus monodon. International Journal of Aquatic Biology, 10(1), 32–44.

Tendencia, E. A., & De La Peña, L. D. (2001). Antibiotic resistance of bacteria from shrimp ponds. Aquaculture, 195(3–4), 193–204. https://doi.org/10.1016/S0044-8486(00)00570-6

Tendencia, E. A., & Dela Peña, L. D. (2002). Level and percentage recovery of resistance to oxytetracycline and oxolinic acid of bacteria from shrimp ponds. Aquaculture, 213(1–4), 1–13. https://doi.org/10.1016/S0044-8486(02)00017-0

Trono, G. A. (1999). Diversity of the seaweed flora of the Philippines and its utilization. Hydrobiologia 398, 1–6.

https://doi.org/10.1023/A:1017097226330

Vinarao, R. T., Salem, G. M., & Ragaza, R. J. (2014). Distribution of Cd, Pb, As and Hg in Oyster Tissue, Sediment and Water in Lingayen Gulf, Philippines. In G. Sauvé (ed.), Molluscan Shellfish Safety (pp. 137–154). Springer Netherlands.

https://doi.org/10.1007/978-94-007-6588-7_12

Downloads

Published

2025-04-30

How to Cite

Bornales, J., & Tahiluddin, A. (2025). Aquaculture chemotherapy in the Philippines: A review . Sustainable Aquatic Research, 4(1), 87–115. https://doi.org/10.5281/zenodo.15255621

Issue

Section

Review Articles