Molecular Characterization and Antibiotic Resistance Profiling of Bacteria Associated with Clarias gariepinus from selected fish farms in Ota, Nigeria
DOI:
https://doi.org/10.5281/zenodo.18032487Keywords:
Antibiotic resistance, Clarias gariepinus, Bacteria diversity, Multiple antibacterial resistance index, Molecular characterizationAbstract
Antibiotic resistance of genetically diverse bacteria is of high implication for fish farming and human consumption. The present study evaluates the genetic diversity and antibiotic resistance profile of bacteria pathogens isolated from Clarias gariepinus in aquaculture farms. Bacteria were isolated from C. gariepinus (n=15), and identified using biochemical methods, and antimicrobial susceptibility test was performed. Multiple antibacterial resistance index (MARI) was determined and isolates with multidrug resistance (MDR) pattern were genotyped and sequenced for 16sRNA and further determined for genetic diversity. Of the fifty bacteria, Vibrio species (30%), Escherichia coli (14%), S. aureus (12%), Proteus spp (12%), Salmonella and Shigella spp (8%), Micrococcus luteus (6%), Bacillus spp (4%), Klebsiella aerogenes (4%), and P. aeruginosa (2%) were observed. All the bacteria isolates showed resistance were generally resistant to several other antibiotics: Impenem, Cefuroxim, Ofloxacin, Augmentin, Cefexime, Cefotaxin, Ciprofloxacin, Ampiclox, Nitrofuranton, and Nalidixic acid while only few bacteria showed intermediate sensitivity. Genetically, diverse multidrug resistance bacteria is a worrisome concern in aquaculture industry and regular surveillance and regulation of antibiotics would ensure sustainable fish production, and public health assurance
References
References
Akan J.C., Abdul-Rahman F.I and Yussuf E. (2010). Physical and chemical parameters in Abattoir waste water sample. Pac. J. of Sci. and Tech. 11(1):640-648.
Akinyemi, A. A and Oyelakin O. O (2014). Molecular Characterization of Bacteria Isolates from Farm-Raised Catfish Clarias gariepinus. Brit. Microbiolo. Res. J. 2014; 4(12): 1345-1352.
Akoachere, J.F., Bugbe, R.N, Oben. B.O., Ndip, L.M and Ndip R.N (2009). Phenotypic characterization of human pathogenic bacteria in fish from coastal waters of South West Cameroun: Public health implication Review on Environmental Health. 2009; 26:147-156.
Alison, K.Y., Eric, F., Pierre, B., Cécile, Q., Catherine, H., Jean-François, K.C., Julien, T., Marc, B.M and Sébastien, D (2022). Fish gut-associated bacterial community in tropical lagoon (Aghien lagoon, Ivory Coast), Frontiers in Microbiology. 2022. Doi.10.3389/fmicb.2022.963456. frontiersin.org
APHA (1999). Standard Method for Examination of Water and Wastewater, American Water Works Association, Water Environment Federation, American Public Health Association, 9020B.
A. Ava, M. Faridullah, U.J. Lithi and V.C. Roy (2020). Incidence of Salmonella and Escherichia coli in fish farms and markets in Dinajpur, Bangladesh. Bangladesh J. Sci. Ind. Res. 55(1), 65-72, 2020. www.banglajol.info
Ben-David, A and Davidson C.E (2014). Estimation method for serial dilution experiments. Journal of Microbiological Methods. Volume 107, 2014, Pages 214-221. https://doi.org/10.1016/j.mimet.2014.08.023
Bergey, D.H and Holt, J.G (2000). Bergey’s Manual of Determinative Bacteriology 9th Edition Philadephia: Lippincott Williams and wilkins 787.
Cabello, F.C. (2006). Heavy Use of Prophylactic Antibiotics in Aquaculture: A Growing Problem for Human and Animal Health and for the Environment. Environ. Microbiol. 8, 1137–1144.
Carlson, J.; Leonard, A.; Hyde, E.; Petrosino, J.; Primm, T (2017). Microbiome Disruption and Recovery in the Fish Gambusia Affinis Following Exposure to Broad-Spectrum Antibiotic. IDR., 10, 143–154
Chatreman, N., Seecharran, D and Ansari A.A (2020). Prevalence and distribution of pathogenic bacteria found in fish and fishery products: A review. Journal of Fisheries and life Sciences. Vol 5(2) | Pp 53-65
Chowdhury, F., Ross, A.G, Islam, M.T., McMillan, N.A.J and Qadri F (2022). Diagnosis, Management and Future Control of Cholera. Clin Microbiol Rev. 35(3): e00211-21. doi: 10.1128/cmr.00211-21
Cheesbrough M. (2010). District Laboratory Practice in Tropical Countries, Part 2, Second Edition update. P.187-195.
Chukwuma, O.U., Echezonachukwu E.P., Maxwell, O (2020). Microbial Assessment of Some Selected Fish Ponds in Awka, Anambra State: Comparative Study and Modelling. Agricultural and Biological Sciences Journal. 6 (2): 91-99 http://www.aiscience.org/journal/absj.
CLSI. (2020). Methods for dilution on antimicrobial susceptibility tests. 9th ed. 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA: Clinical and Laboratory Standards Institute, CLSI document M07eA9.
Croom, K.F and Goa, K.L (2003). Levofloxacin, a review of its use in the treatment of Bacterial infection in the United States. Drugs. 63(24):2769-2802. DOI: 10.2165/00003495-200363240-00008.
Cunningham, C.O (2002). Molecular diagnosis of fish and shellfish diseases: Present status and Potential use in disease control. Aquaculture. 206:19-55.
Dang, S.T.T.; Petersen, A.; Van Truong, D.; Chu, H.T.T. Dalsgaard, A. (2011). Impact of Medicated Feed on the Development of Antimicrobial Resistance in Bacteria at Integrated Pig-Fish Farms in Vietnam. Appl. Environ. Microbiol. 77, 4494–4498.
Dávila, M.S., Latimer, M.F and Dixon, B (2020). Enhancing immune function and fish health in aquaculture - In: Fish Physiology. Volume 38, Pages 123-161. https://doi.org/10.1016/bs.fp.2020.09.003
Doyle, E.M (2007). FRI BRIEFINGS: Microbial food spoilage: Losses and control strategies. A brief review of the literature. Food Research Institute, University of Wisconsin–Madison.
Durojaiye, A.F., Sule, S.O., Ojetayo, T.A. (2019). Health management practices adopted in f ish production at Eriwe fish farming community, Ogun State, Nigeria. Niger. J. Sci. Res. 18 (5), 504–511.
Ewa, E.E., Iwara, A.I., Adeyemi, J.A., Eja, E.I., Ajake, A.O and Out, C.A (2011). Impact of industrial activities on water quality of omoku creek sacha. J. of Environ. Stu. 1(2):8-16.
Fawole, M.O and Oso, B.A (2004). Chracterization of Bacteria. Laboratory Manual of Microbiology 4th Edition, Spectrum Book Ltd, Ibadan, Nigeria. Pg. 24-33.
Foysala, M.J, Robiul Kawserd, R.K., Paulf, S.I., Md Reaz Chakladerh, M.R., Gupta, S.K., Tayj, A., Neilana, B.A., Monique, M., Gagnonb, R.F., Rahmanf, M.M., Timmsa, V.J (2024). Prevalence of opportunistic pathogens and anti-microbial resistance in urban aquaculture ponds. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.134661
Frans, I., Lievens, B., Heusdens, C and Wille, K.A (2008). Detection and Identification of Fish Pathogens: What is the Future? A Review. The Israeli Journal of Aquaculture, Bamidgeh. 60(4) 213-229
Haenen, O (2017. Major bacterial diseases affecting aquaculture. Aquatic AMR Workshop 1: 10-11 April 2017, Mangalore, India.
ICMSF (2007). International Commission for Microbiological Specification for Food Microorganisms in foods. 2. Sampling for Microbiological analysis: Principles and Specific applications 2nd Ed University of Toronto press Buffalo, NY. Available online at: seafooducdavis.Edu/organize/ICMSF.Htm
Khan, I.U., Gannon, V., Kent, R., Koning, W., Lapen, D.R., Miller, J., Neumann, N., Phillips, R., Robertson, W. and Topp, E (2007). Development of a rapid quantitative PCR assay for direct detection and quantification of culturable and non-culturable Escherichia coli from agriculture watersheds. J. Microbiol. Methods. 69, 480–488.
Lundén, T.; Bylund, G. (2000). The Influence of in Vitro and in Vivo Exposure to Antibiotics on Mitogen-Induced Proliferation of Lymphoid Cells in Rainbow Trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 10, 395–404.
Loch, T.P., Scribner, K., Tempelman, R., Whelan, G and Faisal, M (1012). Bacterial infections of Chinook salmon, Oncorhynchus tshawytscha (Walbaum), returning to gamete collecting weirs in Michigan. J. of Fish Dis. 35(1):39-50.
López‑Aladid, R., Fernández‑Barat, L., Alcaraz‑Serrano, V., Bueno‑Freire, L., Vázquez, N., Pastor‑Ibáñez, R., Palomeque, A., Patricia Oscanoa, P and Torre A (2023). Determining the most accurate 16S rRNA hypervariable region for taxonomic identification from respiratory samples. Scientifc Report. 13:3974 https://doi.org/10.1038/s41598-023-30764-z
Lievens B., Grauwet T.J.M.A., Cammue B.P.A and Thomma B.P.H.J (2005). Recent developments in diagnostics of plant pathogens: a review. Recent Res. Devel. Microbiol. 9:57-79.
Maheux, A.F., Bissonnette, L., Boissinot, M., Bernier, J.L.T., Huppé, V., Picard, F.J., Bérubé, È., Bergeron, M.G. (2011). Rapid concentration and molecular enrichment approach for sensitive detection of Escherichia coli and Shigella species in potable water samples. Appl. Environ. Microbiol. 77, 6199–6207.
Marti, E.; Variatza, E.; Balcazar, J.L. (2014). The Role of Aquatic Ecosystems as Reservoirs of Antibiotic Resistance. Trends Microbiol. 22, 36–41.
Nassar M.S.M., Hazzah W.A., Wafaa M K Bakr W.M.K (2019). Evaluation of antibiotic susceptibility test results: how guilty a laboratory could be? J Egypt Public Health Assoc
;94:4. doi: 10.1186/s42506-018-0006-1
Ogunji J and Wuertz S (2023). Aquaculture Development in Nigeria: The Second Biggest Aquaculture Producer in Africa. Water. 15, 4224. https://doi.org/10.3390/ w15244224
Oladipo, I.C and Bankole, S.O (2013). Nutritional and microbial quality of fresh and dried Clarias gariepinus and Oreochromis niloticus; International Journal of Applied Microbiology and Biotechnology Research.
-6.
Olugbojo, J.A and Ayoola, S.O (2015). Comparative studies of bacteria load in fish species of commercial importance at the aquaculture unit and lagoon front of the University of Lagos, Lagos. International Journal of Fisheries and Aquaculture. Vol. 7 (4), Pp 37-46. www.academicjournals.org/ijfa
Olugbojo, J.A., Akinyemi, A.A., Obasa, S.O and Dare, E.O (2024). Pathogenic bacterial diversities in Clarias gariepinus and their seasonal variation among commercial fish farms in Ota, Ogun State, Nigeria.Covenant Journal of Physical and life Sciences. 2024; Vol. 12 No. 1.
Olutiola, P.O., Famurewa, O and Sentag, H.G (2000). An introduction to general Microbiology; a practical approach. 2nd Edition, Bolabey Publication, Ikeja, Nigeria Pp 30-50.
Orji, C.V., Ekwenye., U.N., Eze, V.C., Anuforo, PC (2022). Microbiological and Physicochemical Quality Measurements of Some Fish Ponds in Nigeria. Journal of Applied Sciences. 2022. 22 (2): 68-75. DOI: 10.3923/jas.2022.68.75
Oyelakin, O.O., Akinyemi, A.A., Oloyede, A.R., Idowu, A.A and Ololade, O.O (2019). Genetic diversity studies of bacteria isolated from Clarias gariepinus along Yewa river in Nigeria using Random Amplified Polymorphic DNA (RAPD) techniques and their antibiotic resistance profile. Nigerian Journal of Biotechnology. 2019; 36 (1): 78-86. DOI: https://dx.doi.org/10.4314/njb.v36i1.11
Petty, B.D., Francis-Floyd, R and P.E and Yanong, R (2022). Bacterial Diseases of Fish. MSD Manual. Veterinary manual. Merck & Co., Inc., Rahway, NJ, USA. 2022
Rappe, M.S and Giovannoni. S.J (2003). The uncultured microbial majority. Annu. Rev. Microbiol. 57:369-394.
Sieroslawska, A.; Studnicka, M.; Bownik, A.; Rymuszka, A.; Slonka, J. (1998). Antibiotics and Cell-Mediated Immunity in Fish—In Vitro Study. Acta Vet. 67, 329–334.
Taiwo, I.O., Akinyemi, A.A and Olugbojo, J.A (2013). Bacteriological load in Sarotherodon galilaeus in Ilo-Idimu River, Ota, Nigeria. International Journal of Applied Agricultural Research ISSN 0973-2683. 8 (1): 61-71. Research India Publications http://www.ripublication.com/ijaar.htm
Talwar, C., Nagar S., Rup, Lal, R.L., Krishan, R and Negi, R.K (2018). Fish Gut Microbiome: Current Approaches and Future Perspectives. Indian J Microbiol. 58(4): 397–414. doi: 10.1007/s12088-018-0760-y
Thai, H.H.P., Kim, D., Thi, C., Quach, V. Q., Nguyen, P.T and Nguyen, T.L (2023). Prevalence and antibiotic resistance of Aeromonas schubertii causing internal white spot disease on snakehead fish, Channa striata, in the Mekong Delta, Vietnam. Journal of World Aquaculture Sociey. 23: 1-17. DOI:
1111/jwas.12954
Tower, L (2014). Water quality Monitoring and Management for catfish pond. The fish Site, 7/8 Liberty St, Cork, T12 T85H, Ireland, CRO 707192.
Tubagus, H.R., Indrawati, G.J., Etty, R., Iin, S.D., Wellyzar, S (2009). Identification and phylogenetic analysis of bacterial isolates from Litopenaeus vannamei shrimp culture system and gut environment based on 16SrRNA Gene Sequence. Microbiology Indonesia. 3(2):56-62.
WHO. (2006). Guidelines for drinking water quality. Health criteria and other supporting information, Geneva, Switzerland (5) 10-15.
Zhai, W., Wang, WQ., Zhu, X., Jia., X., Chen., L. (2023). Pathogenic infection and microbial composition of yellow catfish (Pelteobagrus fulvidraco) challenged by Aeromonas veronii and Proteus mirabilis. Aquaculture and Fisheries. 8(2): 166-173
Zhang, S., Li, X., Wu, J., Coin, L., O’Brien, J., Hai, F and Jiang, G (2021). Molecular Methods for Pathogenic Bacteria Detection and Recent Advances in Wastewater Analysis (Review). Water. 13: 3551. MDPI, Basel, Switzerland. https://doi.org/10.3390/w13243551
Zhou, L.; Limbu, S.M.; Qiao, F.; Du, Z.-Y.; Zhang, M. (2018). Influence of Long-Term Feeding Antibiotics on the Gut Health of Zebrafish. Zebrafish. 15, 340–348.
Zounková, R.; Klimešová, Z.; Nepejchalová, L.; Hilscherová, K.; Bláha, L. (2011). Complex Evaluation of Ecotoxicity and Genotoxicity of Antimicrobials Oxytetracycline and Flumequine Used in Aquaculture. Environ. Toxic. Chem. 30, 1184–1189.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
