Temperature influences masculinity, sex reversal after mono-sex, and the hormonal residue in the flesh of Nile tilapia (Oreochromis niloticus)
DOI:
https://doi.org/10.5281/zenodo.7881895Keywords:
sex reversal, mono sex tilapia, masculinization, hormone residue, fish flesh, tilapia aquacultureAbstract
This study was conducted to investigate the impact of temperature on masculinity and growth in hatchery and production phases, and to assess the hormonal residue in fish flesh of Nile tilapia (Oreochromis niloticus). In cemented tanks with hapa setting hatchlings were released and fed with 60 g/kg hormone and maintained at 30 ºC, 33 ºC, 36 ºC and 39 ºC for 28 days and 60 days. At 36 ºC no female fish was observed during the 28 days of hormone treatment and 60 days of trial production. The average body weight gain, daily weight gain, growth trends and survival rate were higher in 36 ºC. The 36 °C treatment was repeated in the production pond for 178 days. Several females (5-6 individuals) were discovered. The survival rate, other growth parameters, and water quality parameters were found to be comparatively optimum during the experiment. Another setup was used to assess the hormonal residue and found at the end of the experiment 42.1 pg/mL 17α-methyltestosterone rest in fish muscle was observed in 178 days. The water quality parameters used in this investigation were also consistent and did not change noticeably during the course of the experiment. This study determined the ideal temperature producing mono-sex tilapia in hatchery and production conditions. The results of this study might enable Nile tilapia mono-sex hatcheries to operate more cheaply and produce pure male tilapia, however, it may also help the government establish a limit for the permissible level of hormone residue in commercial tilapia products.
References
Al-Hakim, N. F. ABD, Saleh, M., Hegazi, A. Z., Aly, A. I. K., & Tahoun, A. M. (2013). Induction of mono-sex (male tilapia) population by inter-specific hybridization and hormonal sex reversal of Nile tilapia. Egyptian Journal of Aquatic Biology and Fisheries, 17(1), 23–33.
Ali, M. A. M. (2009). Effect of different temperatures on growth and sex ratio of Nile Tilapia (Oreochromis niloticus) fry. Journal of Agricultural Science, Mansoura University, 34(11), 10497–10505. https://doi.org/10.3153/jfscom.2009028
Azaza, M. S., Dhraïef, M. N., & Kraïem, M.
M. (2008). Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia. Journal of Thermal Biology, 33(2), 98–105. https://doi.org/10.1016/j.jtherbio.2007.05.007
Azizi-lalabadi, M., & Pirsaheb, M. (2021). Investigation of steroid hormone residues in fish: A systematic review. Process Safety and Environmental Protection, 152, 14–24. https://doi.org/10.1016/j.psep.2021.05.020
Barbosa, I. R., Lopes, S., Oliveira, R., Domingues, I., Soares, A. M. V. M., & Nogueira, A. J. A. (2013). Determination of 17α-methyltestosterone in freshwater samples of tilapia farming by high performance liquid chromatography. American Journal of Analytical Chemistry, 04(04), 207–211. https://doi.org/10.4236/ajac.2013.44026
Baroiller, J. F., & D’Cotta, H. (2001). Environment and sex determination in farmed fish. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 130(4), 399–409. https://doi.org/10.1016/S1532-0456(01)00267-8
Baroiller, J. F., D’Cotta, H., Bezault, E., Wessels, S., & Hoerstgen-Schwark, G. (2009). Tilapia sex determination: Where temperature and genetics meet. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 153(1), 30–38. https://doi.org/10.1016/j.cbpa.2008.11.018
Baroiller, J., Fostier, A., Cauty, C., Rognon, X., Baroiller, J., Fostier, A., Cauty, C., Rognon, X., & Effects, B. J. (1996). Effects of high rearing temperatures on the sex ratio of progeny from sex reversed males of Oreochromis niloticus. In R. S. V. Pullln, J. Lazard, M. Legendre, J. B. A. Kothias, & D. Pauly (Eds.), The Third International Symposium on Tilapia in Aquaculture (Vol. 41, pp. 246–255). ICLARM Conf. Proc.
Baroiller, J. F., Chourrout, D., Fostier, A., & Jalabert, B. (1995). Temperature and sex chromosomes govern sex ratios of the mouthbrooding Cichlid fish Oreochromis niloticus. Journal of Experimental Zoology, 273(3), 216–223. https://doi.org/10.1002/jez.1402730306
Benvenuto, C., Coscia, I., Chopelet, J., Sala-Bozano, M., & Mariani, S. (2017). Ecological and evolutionary consequences of alternative sex-change pathways in fish. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-09298-8
Billah, M. M., Uddin, M. K., Samad, M. Y. A., Hassan, M. Z. B., Anwar, M. P., Abu Hena, M. K., Shahjahan, M., & Al-Asif, A. (2020). Effects of different stocking density of Nile tilapia (Oreochromis niloticus) and common carp (Cyprinus carpio) on the growth performance and rice yield in rice-fish farming system. AACL Bioflux, 13(2), 789–803. https://doi.org/10.3390/su12208658
Blackburn, D. G. (2018). Reproduction in reptiles. In Encyclopedia of Reproduction (Second Edi, Vol. 6, pp. 573–578). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20651-1
Brown, E. E., Baumann, H., & Conover, D. O. (2014). Temperature and photoperiod effects on sex determination in a fish. Journal of Experimental Marine Biology and Ecology, 461, 39–43. https://doi.org/10.1016/j.jembe.2014.07.009
Budd, A. M., Banh, Q. Q., Domingos, J. A., & Jerry, D. R. (2015). Sex control in fish: Approaches, challenges and opportunities for aquaculture. Journal of Marine Science and Engineering, 3(2), 329–355. https://doi.org/10.3390/jmse3020329
Caldini, N. N., Rebouças, V. T., Cavalcante, D. de H., Martins, R. B., & Sá, M. V. do C. e. (2011). Qualidade de água e desempenho produtivo da tilápia do Nilo submetida a diferentes programas alimentares. Acta Scientiarum - Animal Sciences, 33(4), 427–430. https://doi.org/10.4025/actascianimsci.v33i4.12207
Casas, L., Saborido-Rey, F., Ryu, T., Michell, C., Ravasi, T., & Irigoien, X. (2016). Sex change in clownfish: Molecular insights from transcriptome analysis. Scientific Reports, 6(April), 1–19. https://doi.org/10.1038/srep35461
Choudhary, H. R., & Sharma, B. K. (2018). Impact of Nile tilapia (Oreochromis niloticus) feeding on Selected Water quality Parameters. Journal of Entomology and Zoology Studies, 6(5), 2371–2377.
Conover, D. O., & Kynard, B. E. (1981). Environmental sex determination: Interaction of temperature and genotype in a fish. Science, 213(4507), 577–579. https://doi.org/10.1126/science.213.4507.577
Cook, C., & Munguia, P. (2015). Sex change and morphological transitions in a marine ectoparasite. Marine Ecology, 36(3), 337–346. https://doi.org/10.1111/maec.12144
Costa e Silva, R. Z., Alvarenga, É. R., Matta, S. V., Alves, G. F. de O., Manduca, L. G., Silva, M. A., Yoshinaga, T. T., Fernandes, A. F. A., & Turra, E. M. (2022). Masculinization protocol for Nile tilapia (O. niloticus) in Biofloc technology using 17-α-methyltestosterone in the diet. Aquaculture, 547(May 2021). https://doi.org/10.1016/j.aquaculture.2021.737470
Dergal, N. B., Scippo, M.-L., Degand, G., Gennotte, V., Mélard, C., & Abi-Ayad, S.-M. E.-A. (2016). Monitoring of 17α-methyltestosterone residues in tilapia’s (Oreochromis niloticus) flesh and experimental water after its sex reversal. International Journal of Biosciences, 9(6), 101–113.
Desjardins, J. K., Hazelden, M. R., Van Der Kraak, G. J., & Balshine, S. (2006). Male and female cooperatively breeding fish provide support for the “Challenge Hypothesis.” Behavioral Ecology, 17(2), 149–154. https://doi.org/10.1093/beheco/arj018
Desprez, D., Géraz, E., Hoareau, M. C., Mélard, C., Bosc, P., & Baroiller, J. F. (2003). Production of a high percentage of male offspring with a natural androgen, 11β-hydroxyandrostenedione (11βOHA4), in Florida red tilapia. Aquaculture, 216(1–4), 55–65. https://doi.org/10.1016/S0044-8486(02)00276-4
Drummond, C. D., Murgas, L. D. S., & Vicentini, B. (2009). Growth and survival of tilapia Oreochromis niloticus (Linnaeus, 1758) submitted to different temperatures during the process of sex reversal. Ciência e Agrotecnologia, 33(3), 895–902. https://doi.org/10.1590/s1413-70542009000300033
Eknath, A. E., & Hulata, G. (2009). Use and exchange of genetic resources of Nile tilapia (Oreochromis niloticus). Reviews in Aquaculture, 1(3–4), 197–213. https://doi.org/10.1111/j.1753-5131.2009.01017.x
El-Greisy, Z. A., & El-Gamal, A. E. (2012). Monosex production of tilapia, Oreochromis niloticus using different doses of 17α-methyltestosterone with respect to the degree of sex stability after one year of treatment. Egyptian Journal of Aquatic Research, 38(1), 59–66. https://doi.org/10.1016/j.ejar.2012.08.005
El-Sherif, M. S., & El-Feky, A. M. I. (2009). Performance of nile tilapia (Oreochromis niloticus) fingerlings. II. Influence of different water temperatures. International Journal of Agriculture and Biology, 11(3), 301–305.
FAO. (2022). The state of world fisheries and aquaculture 2022. In The State of World Fisheries and Aquaculture 2022. FAO. https://doi.org/10.4060/cc0463en
Ferdous, Z., & Ali, M. (2012). Optimization of hormonal dose during masculinization of tilapia (Oreochromis niloticus) fry. Journal of the Bangladesh Agricultural University, 9(2), 359–364. https://doi.org/10.3329/jbau.v9i2.11052
Fregene, B. T., Karisa, H. C., Bolorunduro, P., & Olaniyi, A. (2020). Extension manual on monosex tilapia production and management (Manual). WorldFish.
Fuentes-Silva, C., Soto-Zarazúa, G. M., Torres-Pacheco, I., & Flores-Rangel, A. (2013). Male tilapia production techniques: A mini-review. African Journal of Biotechnology, 12(36), 5496–5502. https://doi.org/10.5897/AJB11.4119
Garcey, F. J. (1986). Meat hygiene (B. Tindall (ed.); 8th ed.). Gochfeld.
Gómez-Márquez, J. L., Peña-Mendoza, B., Alejo-Plata, M. del C., & Guzmán-Santiago, J. L. (2015). Culture mixed-sex and monosex of tilapia in ponds in Mexico City. Agricultural Sciences, 06(02), 187–194. https://doi.org/10.4236/as.2015.62017
Guerrero, R. D., & Shelton, W. L. (1974). An aceto-carmine squash method for sexing juvenile fishes. Progressive Fish-Culturist, 36(1), 56. https://doi.org/10.1577/1548-8659(1974)36[56:AASMFS]2.0.CO;2
Haq, M. E., Rahman, M., Hossain, A., Al-Asif, A., Rahman, H., Chwakravorty, P., Satter, A., & Islam, M. S. (2017). Comparative growth performance between monosex and natural XY male tilapia in Noakhali region, Bangladesh. Asian Journal of Medical and Biological Research, 3(3), 391–397. https://doi.org/10.3329/ajmbr.v3i3.34529
Hirpessa, B. B., Ulusoy, B. H., & Hecer, C. (2020). Hormones and hormonal anabolics: Residues in animal source food, potential public health impacts, and methods of analysis. Journal of Food Quality, 2020, 5065386. https://doi.org/10.1155/2020/5065386
Hoga, C. A., Almeida, F. L., & Reyes, F. G. R. (2018). A review on the use of hormones in fish farming: Analytical methods to determine their residues. CYTA - Journal of Food, 16(1), 679–691. https://doi.org/10.1080/19476337.2018.1475423
Hossain, D., Rana, S., Khanom, D. A., & Al, S. A. (2021). Effect of hormonal masculinization on growth performance of tilapia (Oreochromis niloticus). Bangladesh Journal of Veterinary and Animal Sciences, 9(July), 52–58.
Islam, M. A., Samad, M. A., Paul, D., Asif, A. Al, & Hossain, A. (2021). Feeding frequency on the growth and production of endemic near-threatened Ompok pabda (Hamilton 1822) in pond setup. Asian-Australasian Journal of Bioscience and Biotechnology, 6(2), 89–102. https://doi.org/10.3329/aajbb.v6i2.56144
Islam, M., & Yasmin, R. (2016). A review on all male mono-sex GIFT seed production by using 17- α methyl testosterone hormone practiced in Bangladesh. International Journal of Fisheries and Aquatic Studies, 4(4), 420–424.
Jensi, A., Marx, K. K., Rajkumar, M., Shakila, R. J., & Chidambaram, P. (2016). Effect of 17 α-methyl testosterone on sex reversal and growth of Nile tilapia (Oreochromis niloticus L., 1758). Ecology, Environment and Conservation, 22(3), 1493–1498.
Karaket, T., Reungkhajorn, A., & Ponza, P. (2022). The optimum dose and period of 17α-methyltestosterone immersion on masculinization of red tilapia (Oreochromis spp.). Aquaculture and Fisheries, 8(2), 174–179. https://doi.org/10.1016/j.aaf.2021.09.001
Khalil, N. A., & Mousa, M. A. (2013). Experimental study on the activation of growth hormone-secreting cells during larval development of Nile tilapia, Oreochromis niloticus. Egyptian Journal of Aquatic Research, 39(1), 67–74. https://doi.org/10.1016/j.ejar.2013.03.002
Khalil, W. K. B., Hasheesh, W. S., Marie, M. A. S., Abbas, H. H., & Zahran, E. A. (2011). Assessment the impact of 17α-methyltestosterone hormone on growth, hormone concentration, molecular and histopathological changes in muscles and testis of Nile tilapia; Oreochromis niloticus. Life Science Journal, 8(3), 329–343.
Kicman, A. T. (2008). Pharmacology of anabolic steroids. British Journal of Pharmacology, 154(3), 502–521. https://doi.org/10.1038/bjp.2008.165
Kim, M., Cho, B., Lim, C., Kim, D., Yune, S. Y., Shin, J. Y., Bong, Y. H., Kang, J., Kim, M., & Son, S. (2013). Chemical residues and contaminants in foods of animal origin in Korea during the past decade. Journal of Agricultural and Food Chemistry, 61, 2293−2298. https://doi.org/10.1021/jf3046297
Koyakomanda, K. C. K., Firat, M. K., Suzer, C., Engin, S., Hekimoglu, M., Saygi, H., Özden, O., Guleç, F., & Saka, S. (2019). Effects of water temperature on sex differentiation and growth parameters of the Mozambique Tilapia (Oreochromis mossambicus, Peters, 1852). Aquatic Sciences and Engineering, 34(1), 22–28. https://doi.org/10.26650/ASE2019499991
Kuwamura, T., Tanaka, N., Nakashima, Y., Karino, K., & Sakai, Y. (2002). Reversed sex-change in the protogynous reef fish Labroides dimidiatus. Ethology, 108(5), 443–450. https://doi.org/10.1046/j.1439-0310.2002.00791.x
Lagomarsino, I. V., & Conover, D. O. (1993). Variation in environmental and genotypic sex-determining mechanisms across a latitudinal gradient in the fish, Menidia menidia. Evolution, 47(2), 487–494.
Liñán-Cabello, M. A., Robles-Basto, C. M., & Mena-Herrera, A. (2013). Somatic growth effects of intramuscular injection of growth hormone in androgen-treated juvenile Nile tilapia, Oreochromis niloticus (Perciformes: Cichlidae). Revista de Biologia Tropical, 61(1), 203–212. https://doi.org/10.15517/rbt.v61i1.10995
Makori, A. J., Abuom, P. O., Kapiyo, R., Anyona, D. N., & Dida, G. O. (2017). Effects of water physico-chemical parameters on tilapia (Oreochromis niloticus) growth in earthen ponds in Teso North sub-county, Busia county. Fisheries and Aquatic Sciences, 20(1), 1–10. https://doi.org/10.1186/s41240-017-0075-7
Martins, G. B., da Rosa, C. E., Tarouco, F. de M., & Robaldo, R. B. (2019). Growth, water quality and oxidative stress of Nile tilapia Oreochromis niloticus (L.) in biofloc technology system at different pH. Aquaculture Research, 50(4), 1030–1039. https://doi.org/10.1111/are.13975
Marzouk, N. M., Shoukry, H. M., Ali, H., Naser, G. A., & Fayed, A. M. S. (2016). Detection of harmful residues in some fish species. Egyptian Journal of Chemistry and Environmental Health, 2(2), 363–381. https://doi.org/10.21608/ejceh.2016.254338
McVeigh, J., Hearne, E., Boardley, I., Bates, G., Hope, V., Ralphs, R., & Van Hout, M. C. (2021). Generating evidence on the use of Image and performance enhancing drugs in the UK: results from a scoping review and expert consultation by the Anabolic Steroid UK network. Harm Reduction Journal, 18(1), 1–12. https://doi.org/10.1186/s12954-021-00550-z
Megbowon, I., & Mojekwu, T. O. (2014). Tilapia sex reversal using methyl testosterone (MT) and its effect on fish, man and environment. Biotechnology, 13, 213–216.
Miao, W., & Wang, W. (2020). Trends of aquaculture production and trade: carp, tilapia, and shrimp. Asian Fisheries Science, 33(S1), 1–10. https://doi.org/10.33997/j.afs.2020.33.S1.001
Mir, S. A., Mushtaq, Z., Mir, I. N., & Mir, S. (2018). Tilapia lake virus: An emerging viral disease of tilapia industry. Journal of Entomology and Zoology Studies, 6(5), 141–144. https://www.researchgate.net/publication/337935036
Mlalila, N., Mahika, C., Kalombo, L., Swai, H., & Hilonga, A. (2015). Human food safety and environmental hazards associated with the use of methyltestosterone and other steroids in production of all-male tilapia. Environmental Science and Pollution Research, 22(7), 4922–4931. https://doi.org/10.1007/s11356-015-4133-3
Mondal, S., Wahab, A., Barman, B. K., & Al-Asif, A. (2020). Enhance the contribution of small indigenous fish production: Emphasis mola (Amblypharyngodon mola) with carps in North-West of Bangladesh. Singapore Journal of Scientific Research, 10(3), 308–316. https://doi.org/10.3923/sjsres.2020.308.316
Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., Little, D. C., Lubchenco, J., Shumway, S. E., & Troell, M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591(7851), 551–563. https://doi.org/10.1038/s41586-021-03308-6
Nivelle, R., Gennotte, V., Kalala, E. J. K., Ngoc, N. B., Muller, M., Mélard, C., & Rougeot, C. (2019). Temperature preference of Nile tilapia (Oreochromis niloticus) juveniles induces spontaneous sex reversal. PLoS ONE, 14(2), e0212504. https://doi.org/10.1371/journal.pone.0212504
O’Keeffe, M., & Farrell, F. (2000). The importance of chemical residues as a food safety issue. Irish Journal of Agricultural and Food Research, 39(2), 257–264.
Okocha, R. C., Olatoye, I. O., & Adedeji, O. B. (2018). Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Reviews, 39(1), 1–22. https://doi.org/10.1186/s40985-018-0099-2
Ospina-Álvarez, N., & Piferrer, F. (2008). Temperature-dependent sex determination in fish revisited: Prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS ONE, 3(7), e2837. https://doi.org/10.1371/journal.pone.0002837
Palupi, E. T., Setiawati, M., Lumlertdacha, S., & Suprayudi, M. A. (2020). Growth performance, digestibility, and blood biochemical parameters of Nile tilapia (Oreochromis niloticus) reared in floating cages and fed poultry by-product meal. Journal of Applied Aquaculture, 32(1), 16–33. https://doi.org/10.1080/10454438.2019.1605324
Pandit, N. P., & Nakamura, M. (2010). Effect of high temperature on survival, growth and feed conversion ratio of Nile tilapia, Oreochromis niloticus. Our Nature, 8, 219–224.
Pankhurst, N. W., & Munday, P. L. (2011). Effects of climate change on fish reproduction and early life history stages. Marine and Freshwater Research, 62(9), 1015–1026. https://doi.org/10.1071/MF10269
Pant, J., Teoh, S. J., Gomes, S., Dani, A., De Jesus, L. S., Pereira, M., & Bhujel, R. C. (2020). Better management practices for monosex tilapia seed production: An illustrated guide (J. Pant, S. J. Teoh, S. Gomes, A. Dani, L. S. De Jesus, M. Pereira, & R. C. Bhujel (eds.); Booklet). WorldFish.
Passini, G., Sterzelecki, F. C., de Carvalho, C. V. A., Baloi, M. F., Naide, V., & Cerqueira, V. R. (2018). 17α-methyltestosterone implants accelerate spermatogenesis in common snook, Centropomus undecimalis, during first sexual maturation. Theriogenology, 106, 134–140. https://doi.org/10.1016/j.theriogenology.2017.10.015
Penman, D. J., & Piferrer, F. (2008). Fish gonadogenesis. Part I: Genetic and environmental mechanisms of sex determination. Reviews in Fisheries Science, 16(SUPPL.1), 14–32. https://doi.org/10.1080/10641260802324610
Phelps, R. P., & Popma, T. J. (2000). Sex reversal of tilapia. In B. A. Costa-Pierce & J. E. Rakocy (Eds.), Tilapia aquaculture in the Americas (Vol. 2, pp. 34–59). The World Aquaculture Society. http://www.extension.org/mediawiki/files/9/9c/Sex_Reversal_of_Tilapia.pdf
Rahma, A., Kamble, M. T., Ataguba, G. A., Chavan, B. R., Rusydi, R., & Melisa, S. (2015). Steroidogenic and thermal control of sex in tilapia (O. niloticus): A review. International Journal of Current Microbiology and Applied Sciences, 4(1), 214–229.
Rana, M. S., Lee, S. Y., Kang, H. J., & Hur, S. J. (2019). Reducing veterinary drug residues in animal products: A review. Food Science of Animal Resources, 39(5), 687–703. https://doi.org/10.5851/kosfa.2019.e65
Rhen, T., Schroeder, A., Sakata, J. T., Huang, V., & Crews, D. (2011). Segregating variation for temperature-dependent sex determination in a lizard. Heredity, 106(4), 649–660. https://doi.org/10.1038/hdy.2010.102
Risto, U., Zehra, H. M., Biljana, S. D., Elizabeta, D. S., Aleksandra, T., & Velimir, S. (2013). Validation of screening method for determination of methyltestosterone in fish. Macedonian Veterinary Review, 36(1), 19–23.
Roberts, B. H., Morrongiello, J. R., Morgan, D. L., King, A. J., Saunders, T. M., & Crook, D. A. (2021). Faster juvenile growth promotes earlier sex change in a protandrous hermaphrodite (barramundi Lates calcarifer). Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-81727-1
Rougeot, C., Prignon, C., Ngouana Kengne, C. V., & Mélard, C. (2008). Effect of high temperature during embryogenesis on the sex differentiation process in the Nile tilapia, Oreochromis niloticus. Aquaculture, 276(1–4), 205–208. https://doi.org/10.1016/j.aquaculture.2008.02.001
SAS Institute. (2014). SAS 9.4 for Windows (9.4). SAS Institute Inc.
Schreiber, S., Focken, U., & Becker, K. (1998). Individually reared female Nile tilapia (Oreochrornis niloticus) can grow faster than males. Journal of Applied Ichthyology, 14, 43–47.
Shajib, M. S. H., Sarker, B., Al-Asif, A., Rahman, M. M., Zafar, M. A., & Hossain, A. (2018). Effects of stocking density on the growth rate of gold fish fry reared in hapa. Asian Journal of Medical and Biological Research, 3(4), 504–515. https://doi.org/10.3329/ajmbr.v3i4.35342
Singh, E., Sharma, O., Saini, V., Ojha, M., & Jain, H. (2017). Optimization of hormone treated diet for masculinization of red tilapia (O. niloticus). International Journal of Fisheries and Aquatic Studies, 5(6), 135–138. https://www.researchgate.net/publication/321214101
Skoupá, K., Šťastný, K., & Sládek, Z. (2022). Anabolic steroids in fattening food-producing animals—A review. Animals, 12(16), 2115. https://doi.org/10.3390/ani12162115
Subasinghe, R., Soto, D., & Jia, J. (2009). Global aquaculture and its role in sustainable development. Reviews in Aquaculture, 1(1), 2–9. https://doi.org/10.1111/j.1753-5131.2008.01002.x
Suresh, V., & Bhujel, R. C. (2012). Tilapias. In J. S. Lucas & P. C. Southgate (Eds.), Aquaculture: Farming Aquatic Animals and Plants (Second ed, pp. 338–364). John Wiley & Sons, Inc.
Suseno, D., Luqman, E., Lamid, M., Mukti, A., & Suprayudi, M. (2020). Residual impact of 17-methyltestosterone and histopathological changes in sex-reversed Nile tilapia (Oreochromis niloticus). Asian Pacific Journal of Reproduction, 9(1), 37–43. https://doi.org/10.4103/2305-0500.275527
Tessema, M., Müller-Belecke, A., & Hörstgen-Schwark, G. (2006). Effect of rearing temperatures on the sex ratios of Oreochromis niloticus populations. Aquaculture, 258(1–4), 270–277. https://doi.org/10.1016/j.aquaculture.2006.04.041
Tine, M., Thiombane, A. B., Sonko, F., Ndiaye, N. D., & Diadhiou, H. D. (2022). Suitable temperature, stocking sensity and feeding rate for optimal growth of sex reversed fry of Nile tilapia Oreochromis niloticus (Senegal River Strain). Agricultural Sciences, 13(07), 897–915. https://doi.org/10.4236/as.2022.137056
Todd, E. V., Liu, H., Muncaster, S., & Gemmell, N. J. (2016). Bending genders: The biology of natural sex change in fish. Sexual Development, 10(5–6), 223–241. https://doi.org/10.1159/000449297
Treiber, F. M., & Beranek-Knauer, H. (2021). Antimicrobial residues in food from animal origin—a review of the literature focusing on products collected in stores and markets worldwide. Antibiotics, 10(5). https://doi.org/10.3390/antibiotics10050534
Valdivieso, A., Wilson, C. A., Amores, A., da Silva Rodrigues, M., Nóbrega, R. H., Ribas, L., Postlethwait, J. H., & Piferrer, F. (2022). Environmentally-induced sex reversal in fish with chromosomal vs. polygenic sex determination. Environmental Research, 213(April). https://doi.org/10.1016/j.envres.2022.113549
Vinarukwong, N., Lukkana, M., Ruangwises, S., & Wongtavatchai, J. (2018). Residual levels of 17α-methyldihydrotestosterone in Nile tilapia (Oreochromis niloticus) fry following feeding supplementation. Cogent Food and Agriculture, 4(1), 1–9. https://doi.org/10.1080/23311932.2018.1526436
Wang, B., Xie, K., & Lee, K. (2021). Veterinary drug residues in animal-derived foods: Sample preparation and analytical methods. Foods, 10(3), 1–32. https://doi.org/10.3390/foods10030555
Weber, C., & Capel, B. (2018). Sex reversal. Current Biology, 28(21), R1234–R1236. https://doi.org/10.1016/j.cub.2018.09.043
Yongo, E., Cishahayo, L., Mutethya, E., Alkamoi, B. M., Costa, K., & Bosco, N. J. (2021). A review of the populations of tilapiine species in lakes Victoria and Naivasha, East Africa. African Journal of Aquatic Science, 46(3), 293–303. https://doi.org/10.2989/16085914.2021.1887804
Yu, J., Li, D., Zhu, J., Zou, Z., Xiao, W., Chen, B., Yang, H., & Key. (2022). Effects of different oxytocin and temperature on reproductive activity in Nile tilapia (Oreochromis niloticus): Based on sex steroid hormone and GtHR gene expression. Fishes, 7, 316. https://doi.org/10.3390/ fishes7060316
Yusuf, N. S., Andayani, S., Risjani, Y., & Faqih, A. R. (2019). Masculinization of tilapia (Oreochromis niloticus) by immersion method using methanol extract of pasak bumi roots (Eurycoma longifolia Jack). Russian Journal of Agricultural and Socio-Economic Sciences, 93(9), 79–87. https://doi.org/10.18551/rjoas.2019-09.08
Zafar, M. A., Hasan, M. Z., Ali, M. M., & Al-Asif, A. (2017). Growth and production performance of Vietnamese koi (Anabas testudineus) with Magur (Clarias batrachus) at different stocking densities. Asian-Australasian Journal of Bioscience and Biotechnology, 2(3), 226–237.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.