Oxidative Stress Responses in Chlorella vulgaris Following Chlorpyrifos Exposure

Oxidative Stress Responses in Chlorella vulgaris

Authors

DOI:

https://doi.org/10.5281/zenodo.18007327

Keywords:

Chlorella vulgaris, Chlorpyrifos, Oxidative stress, Antioxidant enzymes, Aquatic toxicity, Biomarkers

Abstract

Chlorpyrifos (CPF), a widely used organophosphate pesticide, frequently enters aquatic environments and poses potential risks to non-target primary producers such as microalgae. This study investigated the oxidative stress response of Chlorella vulgaris exposed to sublethal concentrations of CPF based on the 96-h EC₅₀ value (4.86 mg/L). Experimental groups were designed using 1/8, 1/4, and 1/2 EC₅₀ concentrations, and biochemical responses were evaluated at 24, 48, 72, 96, and 120 hours. Results demonstrated that CPF exposure induced significant changes in antioxidant enzyme activities. Superoxide dismutase (SOD) and catalase (CAT) activities increased at specific exposure periods, while glutathione peroxidase (GPx) exhibited concentration- and time-dependent alterations. Glutathione (GSH) levels increased throughout exposure and during the elimination phase, indicating activation of non-enzymatic antioxidant defense. In contrast, thiobarbituric acid reactive substances (TBARS), an indicator of lipid peroxidation, showed no statistically significant change.

References

Ammar, A., Al-Enizi, A. M., AlMaadeed, M. A., & Karim, A., (2016). Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes. Arabian journal of chemistry, 9(2), 274-286. https://doi.org/10.1016/j.arabjc.2015.07.006

Aydın, A. N., Aydın, R., & Serdar, O., (2022). Determination of Letal Concentrations (LC50) of Cyfluthrın, Dimethoate Insecticides on Gammarus pulex (L., 1758). Acta Aquatica Turcica, 18(3), 384-392. https://doi.org/10.22392/actaquatr.1080270

Aydın, A. N., & Serdar, O., (2024). Terbiyumun Pontastacus leptodactylus’ta ki Oksidatif Stres ve Antioksidan Yanıtlarının Belirlenmesi. Acta Aquatica Turcica, 20(1), 23-32. https://doi.org/10.22392/actaquatr.1294250

Aydın, A. N., Serdar, O., & Parlak Ak, T., (2024). Determination of Toxic Effect of Gamma Cyhalothrin in Dreissena polymorpha by Some Biomarkers. Journal of Limnology and Freshwater Fisheries Research, 11(1), 20-32. https://doi.org/10.17216/limnofish.1556682

Aydın, A. N., Serdar, O., Ölçülü, A., Çiçek Çimen, I. C., Ak, T. P., Derman, T., ... & Yıldırım, N. C., (2025). Determination of Toxic Effects of Copper in Navicula cryptocephala var. veneta by Biomarkers and Bioaccumulation Quantification. Aquaculture Studies (AquaSt), 25(2). https://doi.org/10.4194/AQUAST2219

Aydın, A. N., Bulut, H., & Serdar, O., (2025)., The effect of Dimethoate on oxidative stress and antioxidant responses of Pontastacus leptodactylus. Revista Cientifica de la Facultade de Veterinaria, 35(1). https://doi.org/10.52973/rcfcv-e35488

Baruah, P., Srivastava, A., Mishra, Y., & Chaurasia, N., (2024). Modulation in growth, oxidative stress, photosynthesis, and morphology reveals higher toxicity of alpha-cypermethrin than chlorpyrifos towards a non-target green alga at high doses. Environmental Toxicology and Pharmacology, 106, 104376. https://doi.org/10.1016/j.etap.2024.104376

Blokhina, Olga, and Kurt Fagerstedt., (2006). Oxidative stress and antioxidant defenses in plants. Oxidative stress, disease and cancer (2006): 151-199.

Braune, B. M., Outridge, P. M., Fisk, A. T., Muir, D. C. G., Helm, P. A., Hobbs, K., ... & Stirling, I., (2005). Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: an overview of spatial and temporal trends. Science of the total environment, 351, 4-56. https://doi.org/10.1016/j.scitotenv.2004.10.034

Chen, S., Chen, M., Wang, Z., Qiu, W., Wang, J., Shen, Y., ... & Ge, S., (2016). Toxicological effects of chlorpyrifos on growth, enzyme activity and chlorophyll a synthesis of freshwater microalgae. Environmental toxicology and pharmacology, 45, 179-186. https://doi.org/10.1016/j.etap.2016.05.032

Erdem, M. N., Erken, H. Y., Burc, H., Saka, G., Korkmaz, M. F., & Aydogan, M., (2014). Comparison of lag screw versus buttress plate fixation of posterior malleolar fractures. Foot & ankle international, 35(10), 1022-1030. https://doi.org/10.1177/1071100714540893

Fernández, B., Vidal-Liñán, L., Bellas, J., Campillo, J. A., Chaves-Pozo, E., & Albentosa, M., (2024). The particle effect: comparative toxicity of chlorpyrifos in combination with microplastics and phytoplankton particles in mussel. Aquatic Toxicology, 275, 107053. https://doi.org/10.1016/j.aquatox.2024.107053

Jiao, W., Han, Q., Xu, Y., Jiang, H., Xing, H., & Teng, X., (2019). Impaired immune function and structural integrity in the gills of common carp (Cyprinus carpio L.) caused by chlorpyrifos exposure: Through oxidative stress and apoptosis. Fish & shellfish immunology, 86, 239-245. https://doi.org/10.1016/j.fsi.2018.08.060

Kumar, M. S., Praveenkumar, R., Jeon, B. H., & Thajuddin, N., (2014). Chlorpyrifos‐induced changes in the antioxidants and fatty acid compositions of Chroococcus turgidus NTMS12. Letters in applied microbiology, 59(5), 535-541. https://doi.org/10.1111/lam.12311

Mansour, A. T., Hamed, H. S., El-Beltagi, H. S., & Mohamed, W. F., (2022). Modulatory effect of papaya extract against chlorpyrifos-induced oxidative stress, immune suppression, endocrine disruption, and DNA damage in female Clarias gariepinus. International Journal of Environmental Research and Public Health, 19(8), 4640. https://doi.org/10.3390/ijerph19084640

Martinez, R. S., Di Marzio, W. D., & Sáenz, M. E., (2015). Genotoxic effects of commercial formulations of Chlorpyrifos and Tebuconazole on green algae. Ecotoxicology, 24(1), 45-54.

Mostafa, A. E., (2025). Ameliorative Effects of Dietary Chlorella vulgaris and β-glucan Against Chlorpyrifos-Induced Toxicity in African catfish (Clarias gariepinus). https://doi.org/10.21203/rs.3.rs-6897467/v1

Mu, W., Jia, K., Liu, Y., Pan, X., & Fan, Y., (2017). Response of the freshwater diatom Halamphora veneta (Kützing) Levkov to copper and mercury and its potential for bioassessment of heavy metal toxicity in aquatic habitats. Environmental Science and Pollution Research, 24(34), 26375-26386. https://doi.org/10.1007/s11356-017-0225-6

Narra, M. R., Rajender, K., Reddy, R. R., Rao, J. V., & Begum, G., (2015). The role of vitamin C as antioxidant in protection of biochemical and haematological stress induced by chlorpyrifos in freshwater fish Clarias batrachus. Chemosphere, 132, 172-178. https://doi.org/10.1016/j.chemosphere.2015.03.006

Nunes, M. E., Müller, T. E., Murussi, C., do Amaral, A. M., Gomes, J. L., Marins, A. T., ... & Loro, V. L., (2018). Oxidative effects of the acute exposure to a pesticide mixture of cypermethrin and chlorpyrifos on carp and zebrafish–a comparative study. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 206, 48-53.

https://doi.org/10.1016/j.cbpc.2018.03.002

Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., & Bao, J. K., (2012). Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell proliferation, 45(6), 487-498. https://doi.org/10.1111/j.1365-2184.2012.00845.x

Özkaleli, M., & Erdem, A., (2016). Nanoatıklar ve çevre: Atık yönetiminde yeni bir yaklaşım. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(3), 183-188.

Qian, H., Li, J., Pan, X., Sun, Z., Ye, C., Jin, G., & Fu, Z., (2012). Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa. Environmental Toxicology, 27(4), 229-237, https://doi.org/10.1002/tox.20636

Prado, R., García, R., Rioboo, C., Herrero, C., Abalde, J., & Cid, A., (2009). Comparison of the sensitivity of different toxicity test endpoints in a microalga exposed to the herbicide paraquat. Environment international, 35(2), 240-247. https://doi.org/10.1016/j.envint.2008.06.012

Regalado, E. L., Schafer, W., McClain, R., & Welch, C. J., (2013). Chromatographic resolution of closely related species: separation of warfarin and hydroxylated isomers. Journal of Chromatography A, 1314, 266-275. https://doi.org/10.1016/j.chroma.2013.07.092

Samajdar, I., Shubhajit, S. A. H. A., & Mandal, D. K., (2023). Chlorpyrifos induced oxidative stress responses and alteration of acetylcholinesterase activity in the olfactory organ of freshwater minor carp, Labeo bata. Iranian Journal of Ichthyology, 10(4), 248-263.

Schıff K, Bay S & Stransky C., (2002). Characterization of storm water toxicants from an urban watershed to freshwater and marine organisms. Urban Water 4: 215-227. https://doi.org/10.1016/S1462-0758(02)00007-9

Serdar, O., Aydin, A. N., & Çimen, I. C. Ç., (2024). Determination of oxidative stress responses caused by aluminum oxide (γ-Al2O3 and α-Al2O3) nanoparticles in Gammarus pulex. Chemosphere, 352, 141193. https://doi.org/10.1016/j.chemosphere.2024.141193

Singh, S., & Singh, R. P., (2008). In vitro methods of assay of antioxidants: an overview. Food reviews international, 24(4), 392-415.

Şişman-Aydın, G., Büyükışık, B., & Oral, R., (2013). Bioaccumulation of cadmium in marine diatom: Thalassiosira allenii Takano. Turkish Journal of Fisheries and Aquatic Sciences, 13(5), 861-867. https://doi.org/10.4194/1303-2712-v13_5_10

Tawfeek, W. S., Kassab, A. S., Al-Sokary, E. T., Abass, M. E., & Sherif, A. H., (2024). Chlorella vulgaris algae ameliorates chlorpyrifos toxicity in Nile tilapia with special reference to antioxidant enzymes and Streptococcus agalactiae infection. Molecular Biology Reports, 51(1), 616.

Tunca, H., Doğru, A., Köçkar, F., Kilic, H. E., & Sevindik, T. O., (2023). Oxidative stress in Arthrospira platensis by two organophosphate pesticides. Anais da Academia Brasileira de Ciências, 95(4), e20200463.

Wang, L., Zhang, X., Wu, L., Liu, Q., Zhang, D., & Yin, J., (2018). Expression of selenoprotein genes in muscle is crucial for the growth of rainbow trout (Oncorhynchus mykiss) fed diets supplemented with selenium yeast. Aquaculture, 492, 82-90. https://doi.org/10.1016/j.aquaculture.2018.03.054

Xing, H., Li, S., Wang, Z., Gao, X., Xu, S., & Wang, X., (2012). Oxidative stress response and histopathological changes due to atrazine and chlorpyrifos exposure in common carp. Pesticide biochemistry and physiology, 103(1), 74-80. https://doi.org/10.1016/j.pestbp.2012.03.007

Villem, A., (2011). Algae Pseudokirchneriella subcapitata in environmental hazard evaluation of chemicals and synthetic nanoparticles. PhD Thesis, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences

Wu, W., Jiang, C. Z., & Roy, V. A., (2016). Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale, 8(47), 19421-19474. https://doi.org/10.1039/C6NR07542H

Yonar, M, S., Yonar, M. E., Ural, M. Ş., & Pala, A., (2022). Effect of chlorpyrifos on some biochemical changes in Cyprinus carpio: the protective effect of ellagic acid. Drug and chemical toxicology, 45(6), 2860-2865. https://doi.org/10.1080/01480545.2021.2011311

Yoon, K. S., Duncan, T., Lee, S. W. Y., Scarloss, B., & Shapley, K. L., (2007). Reviewing the evidence on how teacher professional development affects student achievement. issues & answers. rel 2007-no. 033. Regional Educational Laboratory Southwest (NJ1).

Zahran, E., Elbahnaswy, S., Risha, E., & El-Matbouli, M., (2020). Antioxidative and immunoprotective potential of Chlorella vulgaris dietary supplementation against chlorpyrifos-induced toxicity in Nile tilapia. Fish Physiology and Biochemistry, 46(4), 1549-1560. https://doi.org/10.1007/s10695-020-00814-8

Zhang, Z., Liu, Q., Cai, J., Yang, J., Shen, Q., & Xu, S., (2017). Chlorpyrifos exposure in common carp (Cyprinus carpio L.) leads to oxidative stress and immune responses. Fish & shellfish immunology, 67, 604-611. https://doi.org/10.1016/j.fsi.2017.06.048

Downloads

Published

2025-12-24

How to Cite

Serdar, O. ., Aydın, A. N., Ölçülü, A. ., Çiçek Çimen, I. C. ., Parlak Ak, T. ., Derman, T., Pala, A., & Cıkcıkoğlu Yıldırım, N. (2025). Oxidative Stress Responses in Chlorella vulgaris Following Chlorpyrifos Exposure: Oxidative Stress Responses in Chlorella vulgaris . Sustainable Aquatic Research, 4(3), 270–280. https://doi.org/10.5281/zenodo.18007327

Issue

Section

Original Articles

Most read articles by the same author(s)