Assessment of coliforms and bacterial loads associated with skin, gills, intestines, and muscles of five species of grouper
DOI:
https://doi.org/10.5281/zenodo.18007217Keywords:
Bacterial loads, Coliforms, Groupers, Ice storageAbstract
This study was conducted to determine the total coliform (TC), and fecal coliform (FC) counts and bacterial loads of the skin, gills, intestines, and muscles of grouper, ariolated grouper (Epinephelus areolatus), orange-spotted grouper (Epinephelus coioides), coral trout (Plectropomus areolatus), roving coral grouper (Plectropomus pessuliferus), and moontail seabass (Variola louti). The aerobic bacterial counts of the groupers' skin, gill, intestine, and muscle samples ranged from 9.04 ± 0.14 to 11.57 ± 0.82, 7.69 ± 0.89 to 11.51 ± 0.51, 7.49 ± 0.14 to 11.54 ± 0.41, and 4.41 ± 0.49 to 4.64 ± 0.35 log CFU/g, respectively. The total coliform counts were presented in skin with the values of 1100 MPN/g, while in gills and in intestines the values ranged from 460 to 1100 MPN/g and 240 to 460MPN/g, respectively. The fecal coliform counts were found in skin and gill samples, with the values ranged from 150 to 240 MPN/g and 64 to 150 MPN/g, respectively. In contrast, the total coliform and fecal coliform counts were not detected in all the groupers' muscle samples.
References
Albertos, I., Martín-Diana, A.B., Cullen, P.J., Tiwari, B.K., Ojha, S.K., Bourke, P., Álvarez, C., & Rico, D. (2017). Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets. Innovative Food Science and Emerging Technologies, 44, 117-122. https://doi.org/10.1016/j.ifset.2017.07.006
Albertos, I., Martín-Diana, A.B., Cullen, P.J., Tiwari, B.K., Ojha, S.K., Bourke, P., Álvarez, C., & Rico, D. (2019). Shelf-life extension of herring (Clupea harengus) using in-package atmospheric plasma technology. Innovative Food Science and Emerging Technologies, 53, 85-91. https://doi.org/10.1016/j.ifset.2017.09.010
Al Bulushi, I.M., Poole, S., Deeth, H.C., & Dykes, G.A. (2008). Quantitative assessment of total and Gram-positive aerobic bacteria in fresh and ambient-temperature-stored sub-tropical marine fish. World Journal of Microbiology and Biotechnology, 24, 1867-17875. https://doi.org/10.1007/s11274-008-9687-5
Alfaro, B., Hernandez, I., Balino-Zuazo, L., & Barranco, A. (2013). Quality changes of Atlantic horse mackerel fillets (Trachurus trachurus) packed in a modified atmosphere at different storage temperatures. Journal of the Science of Food and Agriculture, 93 (9), 2179-2187. https://doi.org/10.1002/jsfa.6025
Al-Harbi, A.H. (2003). Faecal coliforms in pond water, sediments and hybrid tilapia Orechromis niloticus x Oreochromis aureus in Saudi Arabia. Aquaculture Research, 34 (7), 517–524. https://doi.org/10.1046/j.1365-2109.2003.00832.x
Al-Harbi, A.H., & Uddin, N. (2004). Seasonal variation in the intestinal bacterial flora of hybrid tilapia (Oreochromis niloticus × Oreochromis aureus) cultured in earthen ponds in Saudi Arabia. Aquaculture, 229 (1-4), 37–44. https://doi.org/10.1016/S0044-8486(03)00388-0
Al-Harbi, A.H., & Uddin, N. (2005). Bacterial diversity of tilapia (Oreochromis niloticus) cultured in brackish water in Saudi Arabia. Aquaculture 250 (3-4), 566–572. https://doi.org/10.1016/j. aquaculture.2005.01.026
Al-Harbi, A.H., & Al-Asous, A.I. (2022). Microbiological and total volatile basic nitrogen (TVB-N) quality changes of groupers during ice storage. International Journal of Fisheries and Aquatic Research, 7 (2), 94-99.
Atwill, E.R., & Jeamsripong, S. (2021). Bacterial diversity and potential risk factors associated with Salmonella contamination of seafood products sold in retail markets in Bangkok, Thailand. Peer J, 9, e12694. https://doi.org/10.7717/peerj.12694
Austin, B. (2006). The bacterial microflora of fish, revised. The Scientific World Journal, 6 (1), 931–945. https://doi.org/10.1100/tsw.2006.181
Craig, M.T., Sadovy de Mitcheson, Y.J., & Heemstra, P.C. (2011). Groupers of the World: A Field and Market Guide. First edition. ed. NISC, (Pty) Ltd, Grahamstown, South Africa.
De Alba, M., Pérez-Andrés, J.M., Harrison, S.M., Brunton, N.P., Burgess, C.M., & Tiwari, B.K. (2019). High pressure processing on microbial inactivation, quality parameters and nutritional quality indices of mackerel fillets. Innovative Food Science and Emerging Technologies, 55, 80-87. https://doi.org/10.1016/j.ifset.2019.05.010
Economou, V., Gousia, P., Kemenetzi, D., Sakkas, H., & Papadopoulou, C. (2016). Microbial quality and histamine producing microflora analysis of the ice used for fish preservation. Journal of Food Safety, 37 (1), e12285. https://doi.org/10.1111/jfs.12285
El-Gendy, N.M., Amer, A., Ibrahim, H.A., & Abou Okada, M. (2024). Microbiological quality assessment of Clarias gariepinus, Bagrus bajad, and Pangasianodon hypophthalmus fillets. Scientific Reports, 14, 13305. https://doi.org/10.1038/s41598-024-62730-8
Falcão, J.P., Dias, A.M.G., Correa, E.F., & Falcão, D.P. (2002). Microbiological quality of ice used to refrigerate foods. Food Microbiology, 19 (4), 269–276 DOI 10.1006/fmic.2002.0490
Gatti-Junior, P., Assunção, A.W., Baldin, J.C., & Amaral, L.A. (2014). Microbiological quality of whole and filleted shelf-tilapia. Aquaculture, 433, 196-200. https://doi.org/10.1016/j.aquaculture.2014.06.015
Gerokomou, V., Voidarou, C., Vatopoulos, A., Velonakis, E., Rozos, G., Alexopoulos, A., Plessas, S., Stavropoulou, E., Bezirtzoglou, E., Demertzis, P.G., & Akrida-Demertzi, K. (2011). Physical, chemical and microbiological quality of ice used to cool drinks and foods in Greece and its public health implications. Anaerobe, 17 (6), 351-353. https://doi.org/10.1016/j.anaerobe.2011.06.005
Heinitz, M.L., & Johnson, J.M. (1998). The incidence of Listeria spp., Salmonella spp., and Clostridium botulinum in smoked fish and shellfish. Journal of Food Protection, 61 (3), 318–323. https:// doi.org/10.4315/0362-028x-61.3.318
Heinitz, M.L., Ruble, R.D., Wagner, D.E., & Tatini, S.R. (2000). Incidence of Salmonella in fish and seafood. Journal of Food Protection, 63 (5), 579–592. https://doi.org/10.4315/0362-028x-63.5.579
ICMSF (International Commission on Microbiological Specifications for Foods), Microorganisms in Foods 2: Sampling for Microbiological Analysis: Principles and Specific Applications 2nd ed. (1986) University of Toronto Press, Toronto.
Jeyasekaran, G., Anandaraj, R., Ganesan, P., Jeya Shakila, R., & Sukumar, D. (2008). Microbiological and biochemical quality of grouper (Epinephelus chlorostigma) stored in dry ice and water ice. International Journal of Food Science & Technology, 43 (1), 145-153. https://doi.org/10.1111/j.1365-2621.2006.01408.x
Jeyasekaran, G., Maeswari, K., Ganesan, P., Jeya Shakila, R., & Sukumar, D. (2005). Quality changes in ice stored tropical wire-netting reef cod (Epinephelus merra). Journal of Food Processing and Preservation, 29 (2), 165-182. https://doi.org/10.1111/j.1745-4549.2005.00021.x
Karim, N., Kennedy, T., Linton, M., Watson, S., Gault, N., & Patterson, M. (2011). Effect of high pressure processing on the quality of herring (Clupea harengus) and haddock (Melanogrammus aeglefinus) stored on ice. Food Control, 22 (3-4), 476-484. https://doi.org/10.1016/j.foodcont.2010.09.030
Kornacki, J.L., Gurtler, J.B., & Stawick, B.A. (2015). Enterobacteriaceae, coliforms, and Escherichia coli as quality and safety indicators. In Compendium of Methods for the Microbiological Examination of Foods, 5th ed.; Salfinger, Y., Tortorello, M.L., Eds.; American Public Health Association: Washington, DC, USA, Chapter 9: 103–120.
Li, X., Li, J., Zhu, J., Wang, Y., Fu, L., & Xuan, W. (2011). Postmortem changes in yellow grouper (Epinephelus awoara) fillets stored under vacuum packaging at 0°C. Food Chemistry, 126 (3), 896-901. https://doi.org/10.1016/j.foodchem.2010.11.071
Mandal, S.C., Hasan, M., Rahman, M.S., Manik, M.H., Mahmud, Z.H., & Islam, M.S. (2009). Coliform bacteria in Nile tilapia, Oreochromis niloticus of shrimp-Gher, pond and fish market. World Journal of Fish and Marine Sciences, 1 (3), 160–166.
Marshall, D.L., & Jindal, V. (1997). Microbiological quality of catfish frames treated with selected phosphates. Journal of Food Protection, 60 (9), 1081-1083. https://doi.org/10.4315/0362-028X-60.9.1081
Novoslavskij, A., Terentjeva, M., Eizenberga, I., Valcina, O., Bartkevičs, V., & Berzins, A. (2016). Major foodborne pathogens in fish and fish products: A review. Annals of Microbiology, 66, 1–15. https://doi.org/10.1007/s13213-015-1102-5
Novotny, L., Dvorska, L., Lorencova, A., Beran, V., & Pavlik, I. (2004). Fish: A potential source of bacterial pathogens for human beings. Veterinarni Medicina, 49 (9), 343–358. https://doi.org/10.17221/5715-Vetmed
Nuñez-Flores, R., Castro, A.X., López-Caballero, M.E., Montero, P., & Gómez-Guillén, M.C. (2013). Functional stability of gelatin-lignosulphonate films and their feasibility to preserve sardine fillets during chilled storage in combination with high pressure treatment. Innovative Food Science and Emerging Technologies, 19, 95-103. https://doi.org/10.1016/j.ifset.2013.04.006
Onjong, H.A., Ngayo, M.O., Mwaniki, M., Wambui, J., & Njage, P.M.K. (2018). Microbiological safety of fresh tilapia (Oreochromis niloticus) from Kenyan fresh water fish value chains. Journal of Food Protection, 81 (12), 1973–1981. https://doi.org/ 10.4315/0362-028X.JFP-18-078
Özogul, F., Özogul, Y., & Kuley, E. (2008). Nucleotide degradation and biogenic amine formation of wild white grouper (Epinephelus aeneus) stored in ice and at chill temperature (4°C). Food Chemistry, 108 (3), 933-941. https://doi.org/10.1016/j.foodchem.2007.11.070
Pao, S., Ettinger, M.R., Khalid, M.F., Reid, A.O., & Nerrie, B.L. (2008). Microbial quality of raw aquacultured fish fillets procured from Internet and local retail markets. Journal of Food Protection, 71 (8), 1544–1549. https://doi.org/10.4315/0362-028x-71.8.1544
Papadopoulos, V., Chouliara, I., Badeka, A., Savvaidis, I.N., & Kontominas, M.G. (2003). Effect of gutting on microbiological, chemical, and sensory properties of aquacultured sea bass (Dicentrarchus labrax) stored in ice. Food Microbiology, 20 (4), 411-420. https://doi.org/10.1016/S0740-0020(02)00148-X
Sharifian, S., Alizadeh, E., Mortazavi, M.S., & Moghadam, M.S. (2014). Effects of refrigerated storage on the microstructure and quality of Grouper (Epinephelus coioides) fillets. Journal of Food Science & Technology, 51, 929-935. doi:10.1007/s13197-011-0589-4
Sheng, L., & Wang, L. (2021). The microbial safety of fish and fish products: recent advances in understanding its significance, contamination sources, and control strategies. Comprehensive Reviews in Food Science and Food Safety, 20 (1), 738–786. https://doi.org/10.1111/1541-4337.12671
Svanevik, C.S., & Lunestad, B.T. (2011). Characterisation of the microbiota of Atlantic mackerel (Scomber scombrus). International Journal of Food Microbiology, 151 (2), 164-170. https://doi.org/10.1016/j.ijfoodmicro.2011.08.016
Thaotumpitak, V., Sripradite, J., Atwill, E.R., Tepaamorndech, S., & Jeamsripong, S. (2022). Bacterial pathogens and factors associated with Salmonella contamination in hybrid red tilapia (Oreochromis spp.) cultivated in a cage culture system. Food Quality and Safety, 6, fyac036. https://doi.org/10.1093/fqsafe/fyac036
Viji, P., Tanuja, S., Ninan, G., Lalitha, K.V., Zynudheen, A.A., Binsi, P.K., & Srinivasagopal, T.K. (2015). Biochemical, textural, microbiological and sensory attributes of gutted and ungutted sutchi catfish (Pangasianodon hypophthalmus) stored in ice. Journal of Food Science and Technology, 52, 3312-3321. https://doi.org/10.1007/s13197-014-1358-y
Walayat, N., Tang, W., Wang, X., Yi, M., Guo, L., Ding, Y., Liu, J., Ahmad, I., & Ranjha, M.M.A.N. (2023). Quality evaluation of frozen and chilled fish: A review. eFood, 4 (1), e67. https://doi.org/10.1002/efd2.67
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
