Effects of replacing dietary black soldier fly larvae (BSFL) meal with fishmeal (FM) in diets for rabbitfish (Siganus sutor) reared in brackish water intertidal earthen ponds

Authors

DOI:

https://doi.org/10.5281/zenodo.16993798

Keywords:

Growth, Brackish water , Rabbitfish, Black soldier fly larvae

Abstract

The effects of replacing dietary fishmeal (FM) with black soldier fly larvae (BSFL) meal in rabbitfish (Siganus sutor) diets were evaluated over 90 days in intertidal earthen ponds at Kibokoni, Kilifi Creek. A total of 240 fish were assigned to a completely randomized design with four dietary treatments; each replicated three times. Fish were reared in hapa cages (1 m × 1 m × 1 m) with 1 mm mesh. Four diet treatments were formulated: (T1- 100 % BSFL, T2 – 75 % fish meal and 25 % BSFL, T3 – 50 % fish meal and 50 % BSFL, T4 – control commercial feed. Fish were stocked at a density of 20 fish/m-3 and fed twice daily at 5% of their body weight. The experimental fish had an initial mean weight of 11.64 ± 0.97 g and a mean length of 9.12 ± 0.14 cm. Final mean weight gain of the fish ranged from 22.75 ± 3.89 g in T2 (lowest) to 32.3 ± 4.05 g in T1 (highest). Feed conversion ratio (FCR) did not differ significantly among the diets (P > 0.05), while survival rate (SR) was highest in T2 (93.3 ± 4.73%) and lowest in T1 (71.1 ± 9.18%). The study provides information that will guide farming of rabbitfish in intertidal earthen ponds, and a possible replacement of fish meal with black soldier fly larvae. Further research on optimal stocking densities is strongly recommended.

References

Abdel-Tawwab, M., Khalil, R.H., Metwally, A.A., Shakweer, M.S., Khallaf, M.A. & Abdel-Latif, H.M.R. (2020). Effects of blacksoldier fly (Hermetia illucens L.) larvae meal on growth performance, organs-somatic indices, body composition, and hemato-biochemical variables of European sea bass, Dicentrarchus labrax. Aquaculture, 522, 735136. https://doi.org/10.1016/ j. aquacuture.2020.735136

Absalom, K. V., & Omenaihe, O. (2000). Effects of Water Replacement rate on Growth and Survival of the Nile Tilapia Oreochromis niloticus Fly. Journal of Aquatic Sciences, 15(1), 19-22.

Adéyèmi, A. D., Kayodé, A. P. P., Chabi, I. B., Odouaro, O. B. O., Nout, M. J., & Linnemann, A. R. (2020). Screening local feed ingredients of Benin, West Africa, for fish feed formulation. Aquaculture Reports, 17, 100386.

Agroindustriais, P. (2013). AOAC. Official methods of analysis of the Association of Official Analytical Chemists. Caracterização, Propagação E Melhoramento Genético De Pitaya Comercial E Nativa Do Cerrado, 26(74), 62.

Akinyi, O. J. (2018). Length-Weight and Diet Composition Of Selected Teleost Fishes From Kilifi County, Kenya (Doctoral dissertation, University of Nairobi).

Ali, M., Nicieza, A., & Wootton, R. J. (2003). Compensatory growth in fishes: A response to growth depression. Fish and Fisheries, 4(2), 147–190.

Ali, S. E., Mahmoud, H. K., & Soliman, N. A. (2020). Evaluation of growth performance and feed efficiency of Nile tilapia fed on different dietary protein levels. Egyptian Journal of Aquatic Research, 46(3), 309–314.

Anderson, D. P. (1995). Fish immunology and fish health. American Fisheries Society.

ANZECC. (2000). Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council.

AOAC. (2003). Official methods of analysis (17th ed.). Association of Official Analytical Chemists.

Aragao C., Cabano M., Colen R., Fuentes J., Dias J. (2020). Alternative formulations for gilthead seabream diets: Towards more sustainable production. Aquac. Nutr. 26, 444–455. doi: 10.1111/anu.13007

Baldwin, L. (2011). The effects of stocking density on fish welfare. The Plymouth Student Scientist 4 (1): 372-383 [http://hdl.han-dle.net/10026.1/13939]

Barroso, F.G.; de Haro, C.; Sánchez-Muros, M.J.; Venegas, E.; Martínez-Sánchez, A.; Pérez-Bañón, C. The potential of various insect species for use as food for fish. Aquaculture 2014, 422–423, 193–201.

Barroso, F.G.; de Haro, C.; Sánchez-Muros, M.J.; Venegas, E.; Martínez-Sánchez, A.; Pérez-Bañón, C. The potential of various insect species for use as food for fish. Aquaculture 2014, 422–423, 193–201.

Belghit, I., Liland, N. S., Gjesdal, P., Biancarosa, I., Menchetti, E., Li, Y., ... & Lock, E. J. (2019). Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, 503, 609-619.

Ben-Tuvia, A. (1966). Red Sea fishes recently found in the Mediterranean. Copeia, 254-275.

Bonaldo A., Di Marco P., Petochi T., Marino G., Parma L., Fontanillas R., et al. (2015). Feeding turbot juveniles Psetta maxima l.with increasing dietary plant protein levels affects growth performance and fish welfare. Aquac. Nutr. 21, 401–413. doi:10.1111/anu.12170.

Boonyaratpalin, M. (1997). Nutrient requirements of marine food fish cultured in Southeast Asia. Aquaculture, 151(1-4), 283-313.

Boonyaratpalin, M., & Unprasert, N. (1989). Effects of pigments from different sources on colour changes and growth of red Oreochromis niloticus. Aquaculture, 79(1-4), 375-380.

Boyd, C. E., & Tucker, C. S. (2012). Pond aquaculture water quality management. Springer Science & Business Media.

Cammack, J. A., & Tomberlin, J. K. (2017). The impact of diet protein and carbohydrate on blow fly (Diptera: Calliphoridae) larval development. Journal of Medical Entomology, 54(5), 1061–1066.

Chapman, P. M. (1995). Bioassay testing for Australia as part of water quality assessment programmes. Australian Journal of Ecology, 20(1), 7-19.

Chiu, S. T., & Pan, B. S. (2002). Digestive protease activities of juvenile and adult eel (Anguilla japonica) fed with floating feed. Aquaculture, 205(1-2), 141-156.

Cummins Jr, V. C., Rawles, S. D., Thompson, K. R., Velasquez, A., Kobayashi, Y., Hager, J., & Webster, C. D. (2017). Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 473, 337-344.

Davis, D. A., and Hardy, R. W. (2022). “Chapter 14 - feeding and fish husbandry,” in Fish nutrition (Fourth edition). Eds., R. W.Hardy and, S. J. Kaushik (Academic Press). doi: 10.1016/B978-0-12-819587-1.00015-X digestive enzyme activity, haematological 523 parameters and gene expression of gilthead seabream (Sparus aurata). Aquac. Nutr. 25, 3–14. doi: 10.1111/anu.12824

De Silva, S. S., & Anderson, T. A. (1995). Fish Nutrition in Aquaculture. Springer.El-Sayed, A. F. M. (2006). Tilapia Culture. CABI Publishing.

De Silva, S. S., Gunasekera, R. M., & Gooley, G. (2000). Digestibility and amino acid availability of three protein‐rich ingredient‐incorporated diets by Murray cod Maccullochella peelii peelii (Mitchell) and the Australian shortfin eel Anguilla australis Richardson. Aquaculture research, 31(2), 195-205.

Devic, E., Leschen, W., Murray, F., & Little, D. C. (2018). Growth performance, feed utilization and body composition of advanced nursing Nile tilapia (Oreochromis niloticus) fed diets containing Black Soldier Fly (Hermetia illucens) larvae meal. Aquaculture nutrition, 24(1), 416-423.

Dewanggani, A. P., Sari, L. A., Sari, P. D. W., Nindarwi, D. D., & Arsad, S. (2021). The effect of feed management technology (life and pellet feed) on the maintenance of mutiara catfish (Clarias sp.) in freshwater cultivation. In IOP Conference Series: Earth and Environmental Science (Vol. 718, No. 1, p. 012017). IOP Publishing.

Dewolu, B. S., et al. (2010). Physicochemical parameters and heavy metals content of water from River Kandad and its seasonal variation. Journal of Applied Environmental and Biological Sciences, 1(4), 95–101.

El-Sayed, A. F. M. (2006). Environmental requirements. In Tilapia culture (pp. 34-46). Wallingford UK: CABI Publishing.

El-Sayed, A.-F.M. (2002). Effects of stocking density and feeding levels on growth and feed efficiency of Nile tilapia (Oreochromis niloticus L.) fry. Aquaculture Research 33 (8): 621-626 [https://doi.org/10.1046/j.1365-2109.2002.00700.x] EPA, 2003,

Fagbenro, O. A., Balogun, A. M., & Fasakin, E. A. (1998). Dietary inclusion of Keratinous protein in practical diets for catfish. Journal of Applied Ichthyology, 14(3), 135–140.

FAO. (2012). The State of World Fisheries and Aquaculture 2012. Food and Agriculture Organization of the United Nations.

FAO. (2016c). Edible insects: Future prospects for food and feed security. Food and Agriculture Organization of the United Nations.

Fawole, F. J., Adeoye, A. A., Tiamiyu, L. O., Ajala, K. I., Obadara, S. O., & Ganiyu, I. O. (2020). Substituting fishmeal with Hermetia illucens in the diets of African catfish (Clarias gariepinus): Effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker. Aquaculture, 518, 73484.

Folke, C., Biggs, R., Norström, A. V., Reyers, B., & Rockström, J. (2021). Social-ecological resilience and biosphere-based sustainability science. Nature Sustainability, 4(8), 587–593.

Freccia, A., Tubin, J. S. B., Rombenso, A. N., & Emerenciano, M. G. C. (2020). Insects in aquaculture nutrition: an emerging eco-friendly approach or commercial reality. Emerging Technologies, Environment and Research for Sustainable Aquaculture, 1-14.

Ghanawi, J., Saoud, I. P., & Shalaby, S. M. (2010). Effect of size sorting on growth performance of juvenile spinefoot rabbitfish, Siganus rivulatus. Journal of the world aquaculture society, 41(4), 565-573.

Glencross, B. D. (2016). A feed is only as good as its ingredients – A review of ingredient evaluation strategies for aquaculture feeds. Aquaculture Nutrition, 22(3), 698–715.

Guerreiro I., Enes P., Merrifield D., Davies S., Oliva-Teles A. (2015). Effects of short-chain fructooligosaccharides on growth performance and hepatic intermediary metabolism in turbot (Scophthalmus maximus) reared at winter and summer temperatures. Aquac. Nutr. 21, 433–443. doi: 10.1111/anu.12175.

Hardy, R. W. (2010). Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquaculture Research, 41(5), 770–776.

Hardy, R.W.; Kaushik, S.J.; Mai, K.; Bai, S.(2021). Fish nutrition—History and perspectives. In Fish Nutrition, 4th ed.; Hardy, R.W.,Kaushik, S.J., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 2–14.

Henry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Insect meals as sustainable protein sources in fish diets. Aquaculture Nutrition, 21(4), 602–617.

Henry, M., Gasco, L., Piccolo, G., and Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 203, 1–22. doi: 10.1016/j.anifeedsci.2015.03.001

Herdiyanti, A. N., Nursyam, H., & Ekawati, A. W. (2018). Proximate composition of some common alternative flour as fish feed ingredient. The Journal of Experimental Life Science, 8(3).

Herdiyanti, A., Lelana, I. Y., & Mulyadi, A. (2007). [Title of the work]. [Publisher or Journal]. (Please complete this citation.)

Holm, J. C., T. Refstie and S. B∅. 1990. The effect of fish density and feeding regimes on individual growth rate and mortality rainbow trout (Oncorhynchus mykiss). Aquaculture 89: 225-232.

Hua, K. A meta-analysis of the effects of replacing fish meals with insect meals on growth performance of fish. Aquaculture 2021, 530, 735732.

Huda, M. A., Sunarno, M. T., & Nurhudah, M. (2020). Potential addition of black soldier fly carcass meal in sangkuriang catfish (Clarias gariepinus) feed formulation. Aquaculture, Aquarium, Conservation & Legislation, 13(5), 2567-2576.

Huda, N., Abdullah, A., & Babji, A. S. (2000). Nutritional quality of surimi powder from threadfin bream. Journal of Muscle Foods, 11(2), 99-109.

Irwin, S., J. O’Halloran and R. D. FitzGerald (1999). Stocking density, growth and growth variation in juvenile turbot, Scophthalmus maximum (Rafinesque). Aquaculture 178: 77-88.

Jaikumar, M. (2012). A review on biology and aquaculture potential of rabbit fish in Tamilnadu (Siganus canaliculatus). International Journal of Plant, Animal and Environmental Sciences, 2(2), 57-64.

Jana, S. N., Garg, S. K., & Patra, B. C. (2006). Effect of inland water salinity on growth performance and nutritional physiology in growing milkfish, Chanos chanos (Forsskal): field and laboratory studies. Journal of Applied Ichthyology, 22(1), 25-34.

Jørgensen, E.H., Christiansen, J.S. & Jobling, M. (1993). Effects of stocking density on food intake, growth performance and oxygen consumption in Arctic charr (Salvelinus alpinus). Aquaculture 110 (2): 191-204 [https://doi.org/10.1016/0044-8486(93)90272-Z]

Karapanagiotidis I. T., Psofakis P., Mente E., Malandrakis E., Golomazou E. (2019). Effect of fishmeal replacement by poultry by-product meal on growth performance, proximate composition,

Karapanagiotidis, I. T., Bell, M. V., & Little, D. C. (2011). Polyunsaturated fatty acid content of common aquaculture fish species. Aquaculture Research, 42(9), 1324–1331.

Karapanagiotidis, I. T., Neofytou, M. C., Asimaki, A., Daskalopoulou, E., Psofakis, P., Mente, E., ... & Athanassiou, C. G. (2023). Fishmeal replacement by full-fat and defatted Hermetia illucens prepupae meal in the diet of gilthead seabream (Sparus aurata). Sustainability, 15(1), 786.

Kohno, H., et al. (1988). Early development of the milkfish Chanos chanos. Aquaculture, 70(2), 131–145.

Kroeckel, S., Harjes, A. G., Roth, I., Katz, H., Wuertz, S., Susenbeth, A., & Schulz, C. (2012). When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture, 364, 345-352.

Lewis, S. L., and Maslin, M. A. (2015). Defining the anthropocene. Nature 519, 171–180. doi: 10.1038/nature14258

Li, Q., Zheng, L., Qiu, N., Cai, H., Tomberlin, J. K., & Yu, Z. (2018). Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and protein production. Waste Management, 79, 1–7.

Li, Y., Kortner, T. M., Chikwati, E. M., Belghit, I., Lock, E. J., & Krogdahl, Å. (2020). Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar). Aquaculture, 520, 734967.

Lupatsch, I. (2007). Comparing Feed Efficiency between Species. Aqua Feeds: Formulations and Beyond, 4(1), 13-16.

Magalhães, R., Sánchez-López, A., Leal, R. S., Martínez-Llorens, S., Oliva-Teles, A., & Peres, H. (2017). Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture, 476, 79-85.

Maiolo S., Parisi G., Biondi N., Lunelli F., Tibaldi E., Pastres R. (2020). Fishmeal partial substitution within aquafeed formula- 567 tions: life cycle assessment of four alternative protein sources. Int. J. Life Cycle Assess. 25, 1455–1471. doi: 10.1007/s11367-020- 568 01759-z

Makkar, H. P. S., Tran, G., Heuzé, V., and Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Anim. Feed Sci.Technol. 197, 1–33. doi: 10.1016/j.anifeedsci.2014.07.008

Mbaru, E. K., Mlewa, C. M., & Kimani, E. N. (2010). Length–weight relationship of 39 selected reef fishes in the Kenyan coastal artisanal fishery. Fisheries research, 106(3), 567-569.

Merino, G., Barange, M., Blanchard, J. L., Harle, J., Holmes, R., Allen, I., ... & Rodwell, L. D. (2012). Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Global Environmental Change, 22(4), 795-806.625

Millamena, O. M., Coloso, R. M., & Pascual, F. P. (Eds.). (2002). Nutrition in tropical aquaculture: Essentials of fish nutrition, feeds, and feeding of tropical aquatic species. Tigbauan, Iloilo, Philippines: Aquaculture Department, Southeast Asian Fisheries Development Center.

Mirera, D. O. (2011). Experimental polyculture of milkfish (Chanos chanos) and mullet (Mugil cephalus) using earthen ponds in Kenya. Western Indian Ocean Journal of Marine Science, 10(1), 59-71

Mirera, D. O., & Mtile, A. (2009). A preliminary study on the response of mangrove mud crab (Scylla serrata) to different feed types under drive-in cage culture system. Journal of Ecology and Natural Environment, 1(1), 7-14.

Mousavi, S., Zahedinezhad, S., and Loh, J. Y. (2020). A review on insect meals in aquaculture: The immunomodulatory and physiological effects. Int. Aquat. Res. 12, 100–115. doi:10.22034/iar(20).2020.1897402.1033

Naylor, R.L., Hardy, R.W., Buschmann, A.H., Bush, S.R., Cao, L., Klinger, D.H., Little, D.C., Lubchenco, J., Shumway, S.E. &Troell, M. (2021) A 20- year retrospective review of global aquaculture. Nature, 591, 551–563. https://doi.org/10.1038/s41586-021-03308-6

Nogales-Merida, S., Gobbi, P., Józefiak, D., Mazurkiewicz, J., Dudek, K., & Rawski, M. (2018). Insect meals in fish nutrition. Reviews in Aquaculture, 10(3), 666–678.

Nogales‐Mérida, S., Gobbi, P., Józefiak, D., Mazurkiewicz, J., Dudek, K., Rawski, M., ... & Józefiak, A. (2019). Insect meals in fish nutrition. Reviews in Aquaculture, 11(4), 1080-1103.

NRC (National Research Council). (2011). Nutrient Requirements of Fish and Shrimp. The National Academies Press.

Ojha, S., Bußler, S., & Schlüter, O. K. (2020). Food waste valorisation and circular economy concepts in insect production and processing. Waste Management, 118, 600-609.

Okemwa, D. M., Ngugi, C. C., & Mirera, D. O. (2021). Growth, nutritive value and bioconversion efficiency of pre-pupal black solider fly fed on urban household and market waste. East African Agricultural and Forestry Journal, 85(1 & 2), 11-11.

Okomoda, V. T., Tiamiyu, L. O., & Iortim, M. (2016). The effect of water renewal on growth of fingerlings. Croatian Journal of Fisheries, 74(1), 25-29.

Oliva-Teles A., Goncalves P. (2001). Partial replacement of fishmeal by brewer’s yeast (Saccaromyces cerevisae) in diets for seabass (Dicentrarchus labrax) juveniles. Aquaculture 202, 269–278. doi: 10.1016/S0044-8486(01)00777-3

Palma M., Trenkner L. H., Rito J., Tavares L. C., Silva E., Glencross B. D., et al. (2020). Limitations to starch utilization in barra-mundi (Lates calcarifer) as revealed by NMR-based metabolomics. Front. Physiol. 11. doi: 10.3389/fphys.2020.00205

Papoutsoglou, S.E., Tziha, G., Vrettos, X. & Athanasiou, A. (1998). Effects of stocking density on behavior and growth rate of European sea bass (Dicentrarchus labrax) juveniles reared in a closed circulated system. Aquacultural Engineering 18 (2): 135-144 [https://doi.org/10.1016/S0144-8609(98)00027-2]

Pauly, D., Christensen, V., Guénette, S., Pitcher, T.J., Sumaila, U.R., Walters, C.J., Watson, R. & Zeller, D. (2002) Towards sustainability in world fisheries. Nature, 418, 689–695. https://doi.org/10.1038/nature01017

Phonekhampheng, O. (2008). On-farm feed resources for catfish (Clarias gariepinus) production in Laos. Diss. Swedish University of Agricultural Sciences.

Portz, L., Cyrino, J. E. P., & Martino, R. C. (2006). Effects of dietary lipid level on growth and body composition of juvenile South American pacu Piaractus mesopotamicus. Aquaculture, 252(2–4), 496–504.

Renna, M., Schiavone, A., Gai, F., Dabbou, S., Lussiana, C., Malfatto, V., ... & Gasco, L. (2017). Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. Journal of animal science and biotechnology, 8, 1-13.

Ringgita, A., Liman, L., & Erwanto, E. (2015). Estimates The Capasities and The Potential Nutrition Value of Pineapple’s Leaves in PT. Great Giant Pineapple Terbanggi Besar As The Ruminant’s Feed. Jurnal Ilmu Peternakan Terpadu, 3, 175-179.

Saoud, I. P., Mohanna, C., & Ghanawi, J. (2008). Effects of temperature on survival and growth of juvenile spinefoot rabbitfish (Siganus rivulatus). Aquaculture Research, 39(5), 491-497.

Sarà, G., Mangano, M. C., Berlino, M., Corbari, L., Lucchese, M., Milisenda, G., et al. (2022). The synergistic impacts of anthropogenic stressors and COVID-19 on aquaculture: A current global perspective. Rev. Fish. Sci. Aquac. 30, 123–135. doi:10.1080/23308249.2021.1876633.

San Martin, D., Orive, M., Iñarra, B., Castelo, J., Estévez, A., Nazzaro, J., ... & Zufia, J. (2020). Brewers’ spent yeast and grain protein hydrolysates as second-generation feedstuff for aquaculture feed. Waste and Biomass Valorization, 11, 5307-5320.

Shelley, C., & Lovatelli, A. (2011). Mud crab aquaculture: a practical manual. FAO Fisheries and aquaculture technical paper, (567),

Siddik M. A. B., Howieson J., Fotedar R., Partridge G. J. (2020). Enzymatic fish protein hydrolysates in finfish aquaculture: a review. Rev. Aquac. 13, 406–430. doi: 10.1111/raq.12481

Simpson, S. L., Batley, G. E., & Chariton, A. A. (2013). Revision of the ANZECC/ARMCANZ sediment quality guidelines. CSIRO Land and Water Science Report, 08/07.

Stadtlander, T., Stamer, A., Buser, A., Wohlfahrt, J., Leiber, F., and Sandrock, C. (2017). Hermetia illucens meal as fish meal replacement for rainbow trout on farm. J. Insects Food Feed 3, 165–175. doi:10.3920/JIFF2016.0056

Stamer, A. (2015). Insect proteins – A new source for aquafeeds: A review. Aquaculture Europe, 40(1), 8–12.

Stickney, R. R. (2000). Encyclopedia of aquaculture. Wiley.

Syahrizal, Ediwarman, Safratilofa, Muhammad Ridwan. Analysis of the use of media resulting from bioconversion of organic waste in the production of maggots BSF (black soldier fly). Jurnal Akuakultur Indonesia, 21(1), 1-10. (2022)

Tacon, A. G. J., & Cowey, C. B. (1985). Protein and amino acid requirements. In P. Tytler & P. Calow (Eds.), Fish energetics (pp. 155–183). Springer.

Tacon, A. G. J., Rausin, N., Kadari, M., & Cornelis, P. (1990). The food and feeding of marine finfish in floating net cages at the National Seafarming Development Centre, Lampung, Indonesia: rabbitfish, Siganus canaliculatus (Park). Aquaculture Research, 21(4), 375-390.

Thurstan, R. H., & Roberts, C. M. (2014). The past and future of fish consumption: Can supplies meet healthy eating recommendations? Marine pollution bulletin, 89(1-2), 5-11.

Tidwell, J. H., & Allan, G. L. (2001). Fish as food: Aquaculture’s contribution. EMBO Reports, 2(11), 958–963.

Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of sciences, 108(50), 20260-20264.

Tippayadara, N., Dawood, M. A., Krutmuang, P., Hoseinifar, S. H., Doan, H. V., & Paolucci, M. (2021). Replacement of fish meal by black soldier fly (Hermetia illucens) larvae meal: effects on growth, haematology, and skin mucus immunity of Nile tilapia, Oreochromis niloticus. Animals, 11(1), 193.

Usman, T., Abdullah, S., Naz, H., Abbas, K., Shafique, L., & Siddique, Q. (2020). Acute toxic effect of technical grade insecticides on behavior, catalase activity and total protein contents of fish, Ctenopharyngodon idella.

Van Huis, A. (2013). Edible insects: Future prospects for food and feed security. FAO.

Van Huis, A., and Oonincx, D. G. (2017). The environmental sustainability of insects as food and feed. A review. Agron. Sustain Dev. 37, 43–14. doi:10.1007/s13593-017-0452-8

Wilson, R. P. (2002). Amino acids and proteins. In: Halver, J.E. & Hardy, R.W. (Eds.), Fish Nutrition (3rd ed.), Academic Press.

Woodland, D. J. (1983). Zoogeography of the Siganidae (Pisces): an interpretation of distribution and richness patterns. Bulletin of marine science, 33(3), 713-717.

Wu, N., Zhang, Y., Ma, Q., & Yu, Z. (2018). Impact of black soldier fly larvae as a protein source on growth performance of fish. Aquaculture Nutrition, 24(3), 864–871.

Xiao, X., Jin, P., Zheng, L., Cai, M., Yu, Z., Yu, J., & Zhang, J. (2018). Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco). Aquaculture research, 49(4), 1569-1577.

Yousif, O. M. (2002). The effects of stocking density, water exchange rate, feeding frequency and grading on size hierarchy development in juvenile Nile tilapia, Oreochromis niloticus L. Emir. J. Agric. Sci. 14: 45-53.

Downloads

Published

2025-08-31

How to Cite

Okemwa, D., Charles Ngugi, & Mirera, D. . (2025). Effects of replacing dietary black soldier fly larvae (BSFL) meal with fishmeal (FM) in diets for rabbitfish (Siganus sutor) reared in brackish water intertidal earthen ponds . Sustainable Aquatic Research, 4(2), 184–205. https://doi.org/10.5281/zenodo.16993798

Issue

Section

Original Articles