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Abstract 

Carbon products promote aggregate floc-rich plankton, with diverse roles in 

flocponic production. Availability, low-cost, and chemical composition of 

agricultural by-products make them ideal substrates for phytoplankton 

production. Phytoplankton maintains water quality by reducing toxic 

substances, but it is problematic under some conditions. Therefore, the study 

evaluates how agricultural carbon sources affect flocponic phytoplankton 

community composition and water quality. Five treatments (wheat-bran, 
Rhodes-hay, maize-cob, maize-stables, and lucerne-hay) and a control (no by-

product) were employed in a complete randomized design, each in triplicate for 

nine weeks. Each treatment and control had Nile tilapia (0.155 ± 0.01 g) and 

rice (seeds) densities of 98 m-3 and 250 m-2, respectively. Temperature, pH, 

dissolved oxygen, and salinity levels did not differ significantly between 

treatments and control. However, TDS, soluble reactive phosphorus (SRP), 

ammonia, nitrite, and nitrate showed significant differences (p<0.05) between 

treatments and control. Lucerne-hay exhibited the highest nitrate levels (0.9 ± 

0.06 mg L-1), SRP (0.6 ± 0.05 mg L-1), and the lowest ammonia and nitrite 

levels compared to other treatments and control. Lucerne-hay had the highest 

phytoplankton diversity (2.48), while the control (1.37) had the least. Further, 
there were significant differences in phytoplankton abundance, with lucerne-

hay having the highest Charophyta (1.45 ± 0.02 indsL-1), Chlorophyta (1.60 ± 

0.02 indsL-1), and Ochrophyta (1.64 ± 0.03 indsL-1) abundance, while the 

control had the least. The result of the study revealed that carbon sources 

influence flocponic water quality and phytoplankton. The composition and 

solubility of lucerne-hay and wheat-bran may have improved water quality and 

phytoplankton. The study suggests that lucerne-hay and wheat-bran are the best 

flocponic carbon sources for phytoplankton and water quality. 
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Introduction 

The global demand for safe and healthy food 

continues to rise in response to the growing human 

population, which is expected to reach 9.7 billion 

people by 2050 (UN, 2019). The demand for 

freshwater fish is increasing due to rising food 

demand, economic development, shifting 

consumption patterns, and animal protein 

competition for human and livestock food 

(Strauch et al., 2019; Pruter et al., 2020). 

Freshwater fish's competitiveness has directly 

influenced fish farming, intensifying Nile tilapia 

and catfish (Strauch et al., 2019; Pruter et al., 

2020). In that case, intensive aquaculture systems 

are increasing, though organic and inorganic 

wastes adversely affect the environment (Cao et 

al., 2007; Farmaki et al., 2014). Hence, 

investment and research in sustainable food 

production technologies are essential to produce 

enough food while minimizing resource use and 

environmental impacts (Pretty et al., 2010; Boyd 

et al., 2020). 

Most aquaculture production globally is either 

intensively farmed in cages or semi-intensively 

raised in pond systems (FAO, 2020). Ponds and 

cages are efficient for producing fish when 

properly managed and require little investment in 

technology (Masser, 2012; Tucker, 2012). 

However, poor management, such as untreated 

effluents or disregarding the environment's 

carrying capacity, may lead to environmental 

pollution and outbreaks of fish diseases (Boyd et 

al., 2020; Henares et al., 2020). Therefore, 

efficient aquaculture systems such as 

recirculating, aquaponic, biofloc, and flow-

through fish farming can contribute sustainably to 

fish production for a healthy human diet (Thilsted 

et al., 2016; FAO, 2020). However, flow-through 

systems require a large amount of water compared 

to recirculating and aquaponic systems that 

recycle water, even though they are more 

expensive to operate (Forster & Slaski, 2010; 

Engle et al., 2020). Closed aquaculture systems 

have attracted interest for further research due to 

their low water consumption and waste output 

(Soaudy et al., 2018; Khanjani and Sharifinia, 

2020; Pinho et al., 2021). Biofloc technology is 

one of these systems; it works with the idea of a 

microbial loop and helps certain types of microbes 

grow. For example, it supports the growth of 

plankton, heterotrophic, and nitrifying bacteria. 

Shrimp and some fish eat these bacteria 

(Avnimelech, 2015; Emerenciano et al., 2017; 

Samocha, 2019; Boyd et al., 2020). However, 

these systems experience high nitrate and 

phosphorus buildup, rely heavily on electricity for 

proper operation, and operate as monocultures 

that do not effectively utilize waste products 

(Badiola et al., 2018; Walker et al., 2020). 

Flocponics is a strategy for circular food 

production that enhances water quality by 

combining biofloc-based aquaculture with 

hydroponics (Pinho et al., 2021). Combining 

hydroponic systems (soilless plant gardening) 

with biofloc systems is a cost-effective and 

environmentally friendly technology that 

simulates a natural ecosystem (Boyd et al., 2020). 

Reusing nutrients to create circular food 

minimizes environmental effects while increasing 

food production and cutting costs associated with 

fertilizer and water (Bohnes et al., 2019; Reid et 

al., 2020). The idea is to increase food security by 

recycling nutrients from fish waste (Kuhn et al., 

2010; Pinho et al., 2021). Various 

microorganisms, including fungi, bacteria, 

microalgae, protozoans, and rotifers, collaborate 

to form flocs from organic waste (Avnimelech, 

2009). The floc contains around 30 to 40% 

organic materials, such as colloids, organic 

polymers, and dead cells, which other organisms 

can use and reintegrate into the productive chains 

(Avnimelech, 2009). Specifically, planktons are 

the primary micro- and macroscopic organisms 

that produce an initial chain of food webs and 

indicators of water quality (Nuraina et al., 2020). 

Planktons in the biofloc system provide nutrients 

such as proteins, amino acids, and fatty acids to 

cultured species, as well as remove surplus 

nutrients (Wasielsky et al., 2006; Azim & Little, 

2008; Emerenciano et al., 2012; Emerenciano et 

al., 2013; Emerenciano et al., 2017). For flocponic 

technology to work, creating and maintaining 

diverse floc aggregates with carbon sources that 

drive floc condition and maintain system integrity 

is important (Soedibya et al., 2022). It is, 

therefore, critical to know the available and best 

carbon sources that stimulate and improve 

phytoplankton growth and diversity since 

plankton (phytoplankton and zooplankton) are 

fish nutrients and biological water quality 
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indicators in aquaculture (Castro-Mejía et al., 

2017). Flocponics necessitate using a carbon 

source with suitable carbon-to-nitrogen ratios (C: 

N ranging from 10 to 20:1) (Pinho et al., 2021).  

One of the main factors affecting floc 

characteristics is the carbon source, which usually 

differs in carbon and nutrient (N and P) content 

and degradability (El-Sayed, 2021). For this 

reason, carbon sources are beneficial when they 

facilitate quick nutrient removal and large-volume 

production of floc (Khanjani & Sharifinia, 2020). 

Different carbon sources such as acetate, corn, 

starch, glycerol, molasses, rice bran, molasses, 

glucose, and sucrose have been the drivers for the 

development of biofloc for fish, prawns, shrimps, 

and crayfish (Dauda, 2019). Some studies have 

checked the effects of various carbon sources and 

found out which ones are best for fish and 

crustaceans in biofloc systems (Ahmad et al., 

2016; Rajkumar et al.,2016; Dauda et al.,2017; 

Khanjani et al., 2017; Bakhshi et al., 2018). 

Nevertheless, there is no information available on 

the effects of different carbon sources on the 

flocponic production of Nile tilapia, rice, and 

plankton. Furthermore, no studies have researched 

organic carbon sources such as lucerne-hay, 

Rhodes-hay, maize-stable, maize-cob, and wheat-

bran in flocponic systems or biofloc technology. 

Such materials will reduce the core competition of 

refined organic and inorganic carbon sources and 

promote aquaculture growth with little or no 

effluent to the environment. Hence, there is a need 

to establish flocponic systems using inexpensive 

and commonly available carbon sources. The 

application of these products in flocponics is 

promising due to their composition, cost, and 

availability. Therefore, the study evaluates how 

agricultural carbon sources affect flocponic 

phytoplankton community composition and water 

quality. 

Materials and Methods 

Study Area 

The study was conducted at the University of 

Eldoret fish (UoE) hatchery for 63 days from May 

2022 to November 2022 under greenhouse 

conditions and temperatures ranging from 26 to 

30oC. The campus is 9 Km Northeast of Eldoret 

Municipality on the Eldoret-Ziwa Road. The 

University of Eldoret is within Rift Valley 

Province, Uasin Gishu County, and Eldoret Town 

(Kenya).  

Experimental Design  

The experiment set up included 18 rectangular 

indoor plastic fish tanks (1.3 m by 1 m by 1 m in 

length, width, and depth, respectively) using a 

flocponic system. Nile tilapia fry with similar 

mean weight (0.16 ± 0.01 g) and length (2.16 ± 

0.03 cm) were randomly selected and stocked at 

the same density (98 fry m-3) in each system. Rice 

seeds with the same density of 250 plants (seeds) 

m-2 were planted in a suspended plastic egg tray 

of 100 cm by 30 cm in a flocponic fish-holding 

unit. Gravels of 0.5 inches were added into the 

trays to hold and act as the substrate for the rice 

seeds' germination and growth. The treatments 

were wheat-bran, Rhodes-hay, maize-cobs, 

maize-stables, lucerne-hay agricultural by-

products, and control (no products), respectively 

(Figure 1). The treatments were in triplicates in a 

completely randomized design. Stoichiometry 

analysis was conducted to calculate each carbon 

source's carbon, nitrogen, and phosphorus (C: N: 

P) ratios and quantities. The experimental 

research used rice seeds from the Ahero rice 

scheme agro-vet Kisumu County. University of 

Eldoret (UoE) fish hatchery provided the male 

sex-reversed O. niloticus fingerlings for the 

research experiment. We purchased commercial 

fish diets with the same crude protein (30%) from 

Kenya Marine and Fisheries Training Institute 

Sangoro and administered to fish in all the 

treatments. Fish were fed thrice daily, at 0930, 

1230, and 1630 h. 

Proximate analysis of organic carbon sources 

All ground wheat-bran, Rhodes-hay, maize-cob, 

maize-stables, and lucerne-hay proximate 

analyses were determined in triplicate, according 

to standard AOAC methods (AOAC, 1998). 

Samples were dried in an oven at 60°C until 

constant weight to determine moisture content. 

Ash was determined by a combustion method at 

550°C for four hours, while crude protein was 

measured by nitrogen analysis (N x 6.25) using 

the Kjeldahl method. The crude fiber was 

determined by digesting dried lipid-free residue 

with 1.25% sulfuric acid and 1.25% sodium 

hydroxide and calcining it. We analyzed crude 

lipid analysis using an automatic fat extraction 
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system (SOCS PLUS-SCS 08 AS, Pelican 

Equipment, Chennai, Tamil Nadu, India). We 

finally analyzed carbon and nitrogen using the 

colorimetric determination method and 

phosphorus by persulfate digestion followed by 

acid-molybdate determination (Duguma et al., 

2014) (Table 1). 

 

Figure 1. Experimental treatments (wheat-hay, Rhodes-hay, maize-cob, maize-stables, and lucerne-hay) and control layout 

design in a flocponic set-up. 

Table 1. Proximate analysis of organic carbon sources (the daily amount of carbon source addition calculation: using a 15:1 

carbon-to-nitrogen ratio) 

Parameters (% in 1g) 

Treatments 

Wheat-bran) Rhode-hay Maize-cob Maize-stable Lucerne-hay 

Ash (%) 5.20± 0.05 7.05±0.10 2.91±0.05 3.30±0.05 7.55± 0.00 

Carbon (%) 22.08±0.12 21.18±0.06 23.72±0.12 23.06±0.06 30.01± 0.12 

Nitrogen (%) 2.074±0.03 1.41±0.02 1.61±0.01 1.48±0.00 3.41± 0.01 

Phosphorus (%) 0.51±0.00 0.43±0.00 0.34±0.27 0.06±0.00 1.1±0.00 

Protein (%) 12.96± 0.15 8.8±0.10 10.06±0.04 9.25±0.02 21.3± 0.03 

C:P per (1g) 43.3:1 49.3:1 69.8:1 384.3:1 27.3:1 

C: N per (1g) 10.7:1 15:1 14.7:1 15.6:1 8.8:1 

C: N:P per (1g) 40.9:3:1 49.3:3:1 69.8:5:1 384.3:25:1 27.3:3:1 

Quantity (g) in 15:1 (C: N) daily 

addition to flocponic system 
1.36 1.00 1.02 0.96 1.67 

 

Flocponic inoculation  

In a flocponic experiment, inoculation was carried 

out using a similar 15:1 carbon-to-nitrogen ratio 

of ground wheat-bran, Rhodes-hay, maize-cob, 

maize-stables, and lucerne-hay. Initial inoculation 

was employed for one month to enable microbial 

community stimulation before stocking Nile 

tilapia and rice. The carbon sources were 

measured daily, mixed with 100 ml of water, and 

left overnight in an anaerobic environment before 

being applied to each flocponic set treatment daily 

to improve texture for faster breakdown by 

bacteria (De Schryver et al., 2008). Inoculation 

was done before and continuously after stocking 

to provide the system with a substrate and 

bacterial growth (Crab et al., 2012). Continuous 

artificial aeration was used to achieve optimal 

oxygen levels for fish, plants, floc growth, and 

solid substrate suspension (Crab et al., 2012). 
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Sampling  

Water physical-chemical parameters  

Water quality parameters were measured 

according to the standard methods of the 

American Public Health Association (APHA, 

1989). The following parameters were measured 

in situ daily using a YSI 540 dissolved oxygen 

(DO) and Multi-functional water quality tester 

EZ-9909: dissolved oxygen (DO), temperature, 

pH, electrical conductivity, and total dissolved 

solids, respectively. Water nutrients samples were 

collected weekly for the measurement of the 

following nutrients: ammonia, nitrite, nitrate, and 

soluble phosphorus using an optical photometer 

YSI 9500 (YSI Incorporated, Yellow Springs, 

OH, USA) (±1percentage precision) (YSI, I. 

2014) following the methodologies described by 

the manufacturer.  

Phytoplankton sampling, identification and 

enumeration 

Samples of 50 ml of phytoplankton were collected 

weekly using a Perspex tube fitted with nylon net. 

All samples in each treatment were collected from 

5 different locations, mixed thoroughly, and 

transferred to sterile plastic bottles (Thompson, 

2002). The samples were filtered with 25 µm 

mesh nets and preserved using Lugol iodine 

solution. A standard inverted light microscope 

with a magnification of 10 x 40 (Swift, M-4000) 

was used to identify and count phytoplankton 

cells. A sub-sample of 1ml from each sample was 

placed on a Sedgewick–Rafter (S–R) cell, which 

has 1000 fields of 1 mm3. The S–R cell was left 

undisturbed for 2 minutes to allow the 

phytoplankton to settle. Individual phytoplankton 

cells were identified in 10 randomly chosen S-R 

cells. Phytoplankton identification to genus level 

was determined using keys by (Janse et al., 2006) 

and (Haney et al., 2013). Phytoplankton cell 

counts were recorded in ten randomly selected S-

R cells. The number of phytoplankton cells was 

expressed as the number of natural units/cells per 

liter. The formula used to determine the total 

number of phytoplankton cells was as follows: 

N = (P × C × 100) / L  

Where N=the number of plankton cells or units 

per liter of original water;  

P= the average number of plankton counted in 10 

fields; the  

C is the volume of concentrates (ml); L is the 

volume (L) of the pond water sample. 

Data Analysis 

One-way ANOVA was used after phytoplankton 

data transformation to test the effect of treatments 

on phytoplankton abundance using Minitab 19 

software. We used Minitab 19 software to 

compute weekly means for each treatment and 

control group (total of six weeks) and performed 

repeated measure ANOVA analysis. We used 

repeated measure ANOVA to determine how the 

treatment altered the amount of nutrients and 

phytoplankton in water over time (the 

experimental period). The Shannon Diversity 

Index (Shannon-Wiener Index) measures the 

diversity of species in a community. A value of H 

= 0 indicates that the community contains only 

one species (Zach, 2021). We used Shannon-

wiener (H') indices to assess the diversity of 

phytoplankton communities in treatments and 

control with the PAST software. 

Furthermore, a generalized linear mixed model 

(GLM) was used to test the effect of carbon 

sources on response variables SRP, NH4
+, NO2

-, 

and NO3
- with the lme (Linear Mixed Effects) 

function in the Statgraphics software. The model 

incorporated carbon sources (treatments) as a 

categorical variable and time (weeks 0 to 9) as a 

fixed effect. We also included the interaction of 

treatments (Carbon sources) with time (treatments 

* time) to test for differences in the time changes 

of responses. Response variables were log-

transformed where necessary to meet normality 

assumptions. Canonical Correspondence Analysis 

(CCA) was used to determine the relationship 

between water physiochemical parameters, 

carbon sources, and phytoplankton among the 

treatments. Finally, we used PAST software to 

analyze CCA. 

Results 

Water quality parameters in the flocponic 

treatments and control 

Among the treatments and the control, there was a 

significant difference in ammonia (F0.05, 5=5.71, p 

= 0.0001), nitrite (F0.05, 5=18.02, p = 0.0001), 

nitrate (F0.05, 5=11.87, p = 0.0001), and soluble 
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reactive phosphorus (SRP) (F0.05, 5=7.96, p = 

0.0001) (Table 2). The ammonia and nitrite levels 

in treatments and control varied between 0.01 and 

0.48 mgL-1. Lucerne-hay had the highest nitrate 

and soluble reactive phosphorus levels, followed 

by Rhodes-hay, wheat-bran, maize-cob, and 

maize-stables. The control had the lowest levels. 

Temperature, DO, and TDS were statistically 

similar among treatments and control (Table 2). 

The water nutrient analysis for exhibited that 

ammonia, nitrite, nitrate, and soluble reactive 

phosphorus concentration increased over time in 

the treatments and control (Figures 2 to 5). 

Ammonia, nitrite, nitrate, and SRP significantly 

(p<0.05) differed across all the treatments and 

control over time. Ammonia levels were 

statistically different between treatments and 

control (F (45, 120) = 1.54, p = 0.034) (Figure 2). 

There was also a significant difference between 

treatments over time in the following parameters: 

nitrite (F (45, 120) =0.94, p = 0.028) and nitrate (F 

(45, 120) =5.2, p = 0.0001) (Figure 3 and 4, 

respectively). However, there was no significant 

variation in SRP levels among treatments and 

control (Figure 5). All nutrients increased 

significantly after three weeks. During the first 

three weeks, all nutrients were below 0.5 mgL-1. 

There was a significant increase in all the nutrients 

after three weeks. During the experiment period, 

the control group had the highest levels of 

ammonia and nitrite, followed by the maize-

stables, maize-cob, wheat-bran, Rhodes-hay, and 

lucerne-hay groups (Figures 2 and 3). However, 

changes were noticeable in nitrate and phosphorus 

from week five, where carbon sources lucerne-hay 

exhibited the highest nitrate and phosphorus levels 

among the treatments and controls (Figures 4 and 

5). 

Table 2. Physio-chemical water parameters (x̄ ± SE) at different treatments (carbon sources): wheat-bran, Rhodes-hay, maize-

cob, maize-stables, lucerne-hay, and control (no carbon) in flocponic system. 

Parameter 
Wheat-

bran 
Rhodes-hay Maize-cob 

Maize-

stables 
lucerne-hay Control F-value p-value 

Ammonia  

(mg L-1) 
0.3±0.02a 0.2±0.02a 0.3±0.02a 0.3±0.02ab 0.3±0.02a 0.4±0.03b 5.71 0.0001 

Nitrite  

(mg L-1) 
0.3±0.02a 0.3±0.02a 0.3±0.03a 0.4±0.04ab 0.3±0.01a 0.6±0.04b 18.02 0.0001 

Nitrate  

(mg L-1)  
0.7±0.05a 0.7±0.05a 0.7±0.05a 0.5±0.04b 0.9±0.06c 0.5±0.04b 11.87 0.0001 

Phosphorus  

(mg L-1)  
0.4±0.03a 0.5±0.05a 0.4±0.03a 0.6±0.03a 0.6±0.05b 0.4±0.03a 7.96 0.0001 

Temperature  

(oC) 
27.9±0.15a 27.9±0.14a 27.8±0.14a 27.8±0.14a 27.7±0.19a 27.9±0.14a 0.31 0.910 

D.O (mg L-1) 5.5±0.06a 5.6±0.05a 5.5±0.05a 5.5±0.05a 5.5±0.05a 5.5±0.05a 0.58 0.717 

TDS (mg L-1) 113.0±4.20a 101.4±3.90a 109.6±3.65a 103.3±2.86a 103.4±2.94a 104.4±3.42a 1.59 0.162 

pH 8.5±0.08ab 8.5±0.08ab 8.3±0.07a 8.4±0.07ab 8.3±0.06a 8.7±0.10ab 3.87 0.002 

Salinity  

(mg L-1) 
0.5±0.01a 0.5±0.01a 0.5±0.01a 0.5±0.01a 0.5±0.02a 0.5±0.01a 1.29 0.266 

Note: Each value represents mean ± SE; Values with varied superscripts letters (a, b, c, d, and e) within the same row are 

significantly different (p<0.05)—abbreviations: DO, dissolved oxygen; TDS, total dissolved solids. 
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Figure 2. Variation of ammonia at different treatments (wheat-bran, Rhodes-hay, maize-cob, maize-stables, and lucerne-hay and 

control during the experimental period of nine weeks in the flocponic system. 

 

Figure 3. Variation of nitrite at different treatments (wheat-bran, Rhodes-hay, maize-cob, maize-stables, and lucerne-hay) and 

control during the experimental period of nine weeks in the flocponic system. 

 
Figure 4. Variation of nitrate at different treatments (wheat-bran, Rhodes-hay, maize-cob, maize-stables, and lucerne-hay) and 

control during the experimental period of nine weeks in the flocponic system. 
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Figure 5. Variation of soluble reactive phosphorus (SRP) at different treatments (wheat-bran, Rhodes-hay, maize-cob, maize-

stables, and lucerne-hay) and control during the experimental period of nine weeks in the flocponic system. 

General linear mixed model (Water quality, 

Carbon source, and Weeks) 

Ammonia, nitrite, nitrate, and phosphorus did not 

vary with some treatments (Table 3). However, 

there was a significant difference (p<0.05) 

between the lucerne-hay and maize-stable 

treatments on nitrate levels. The control exhibited 

significant differences (p<0.05) in all the water 

nutrients (ammonia, nitrite, nitrate, and soluble 

reactive phosphorus) (Table 3). Furthermore, 

there was a significant difference (p <0.05) in 

ammonia, nitrate, nitrite, and phosphorus levels 

over weeks. In the ANOVA table, weeks versus 

water nutrients were significantly different 

(p<0.05) (Table 3). Treatments versus ammonia, 

nitrite, and nitrate levels were statistically (p 

<0.05) different, with no significant difference in 

phosphorus nutrient concentration. The weeks 

(experimental period) * treatments significantly 

varied (p <0.05) on nitrate and ammonia water 

nutrient levels, while nitrite and phosphorus 

nutrient concentrations exhibited no significant 

difference (Table 3). 

Table 3. Generalized mixed model for water variables at its interaction with time (weeks) and treatments (wheat-bran, Rhodes-

hay, maize-cob, maize-stables, and lucerne-hay) and control 

 Ammonia Nitrite Nitrate Phosphorus (SRP) 

Fixed effects β(T-value) P-value β(T-value) P-value β(T-value) P-value β(T-value) P-value 

Wheat-bran                       -0.009(-1.02)0.311 0.012(1.60)0.113 -0.006(-0.70)0.488 -0.001(-0.05)0.959 

Rhodes-hay                       -0.012(-1.40)0.165 0.008(1.05)0.295 -0.011(-1.37)0.173 -0.025(-1.23)0.222 

Maize-cob                       -0.012(-1.40)0.163 0.006(0.78)0.436 -0.002(-0.25)0.803 0.031(1.55)0.124 

Maize-stables                       -0.010(-1.19)0.237 0.009(1.23)0.222 -0.022(-2.68)0.008 0.027(1.37)0.174 

Lucerne-hay                       0.015(1.73) 0.087 0.013(1.80)0.075 0.077(9.42)0.000 -0.003(-0.15)0.884 

Control 0.052(13.18)0.000 0.050(15.23)0.000 0.076(20.80)0.000 0.065(7.31)0.000 

Weeks 0.013(5.64)0.00001 0.014(7.13) 0.0000 0.031(9.25) 0.00001 0.026(5.33) 0.0000 

ANOVA (F-value) p-value (F-value) p-value (F-value) p-value (F-value) p-value 

Weeks (15.55)0.0001 (30.79)0.0001 (103.02)0.0001 (12.97)0.0001 

Treatments (3.35)0.007 (8.45)0.000 (19.66)0.0001 (1.34)0.254 

Weeks*treatments (1.54)0.034 (0.94)0.579 (5.20)0.0001 (0.71)0.901 

R-sq (%) 65.31 75.09 91.30 56.44 

Note: The ‘full’ model included carbon sources (treatments) wheat-bran, rhodes-hay, maize-cob, maize-stable, lucerne-hay, and 

control, time in weeks, treatments and treatments*time as fixed effect as explained by the model. β=coefficient 
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Phytoplankton in the flocponic system 

Phytoplankton  

The phytoplankton abundance during the 

experimental period in flocponic carbon-based 

treatments and controls is shown in Table 4. There 

was a significant difference (F 0.05, 5=16.30, p = 

0.0001) in the Charophyta genera group 

abundance among the treatments and control. The 

lucerne-hay carbon source exhibited the highest 

Charophyta abundance (1.45±0.02 indsL-1), and 

the control recorded the lowest number 

(1.15±0.04 indsL-1). There were also significant 

differences in the Chlorophyta (F0.05, 5 = 36.59, p 

= 0.0001) and Ochrophyta (F0.05, 5 = 9.54, p = 

0.0001) group’s abundance. In the Chlorophyta 

and Ochrophyta groups, lucerne-hay exhibited the 

highest abundance, while control recorded the 

lowest (Table 4).  

Table 5 shows the phytoplankton genera identified 

and the diversity at different treatments and 

controls. Fragilaria, Pediastrum (Ochrophyta), 

Chlorella, Cladophora, Protococcus, Spirogyra, 

Spirotaenia, Volvox (Chlorophyta), Cosmarium, 

Mougeotia, Penium, Zygnema, Closterium, 

Desmidium, and Coleastrum (Charophyta) are 

identified phytoplankton genera. Genera 

phytoplankton Fragilaria, Protococcus, and 

Zygnema genera were present in all the treatments. 

Furthermore, the carbon source, lucerne-hay, 

recorded all 13 genera of phytoplankton groups, 

except Pediastrum and Coleastrum, whereas the 

control only recorded four genera: Fragilaria, 

Protococcus, Mougeotia, and Zygnema. All the 

carbon source treatments had the highest 

phytoplankton diversity compared to the control. 

The lucerne-hay carbon source (2.48) had the 

most diversity, while the control (1.37) had the 

least (Table 5). 

Figures 6-8 illustrate the dynamics of 

phytoplankton abundance over time. Overall, 

adding carbon sources increased phytoplankton 

abundance over time in treatments and the control. 

Results indicated that Ochrophyta, Chlorophyta, 

and Charophyta over time were not significantly 

(p > 0.05) different between the treatments and 

control. However, the post hoc test revealed 

variation in pattern of phytoplankton abundance 

over time, with some carbon sources differing 

from the control and other carbon source 

treatments. The abundance of phytoplankton in 

each treatment increased and stabilized starting in 

week 3. From week 1 to week 3, the abundance of 

Charophyta, Ochrophyta, and Chlorophyta rose 

across all treatments and control. Figure 6 displays 

the Charophyta abundance throughout the 

experimental period. Charophyta abundance 

significantly changed in a time-dependent manner 

over the study period. Week 3 exhibited the 

highest peak of Charophyta abundance, with 1.5 

indsL-1 for the lucerne-hay and 1.18 indsL-1 for the 

control. Figures 7 and 8 showed comparable 

trends in the abundance of Chlorophyta and 

Ochrophyta. The highest peak of Chlorophyta and 

Ochrophyta abundance was detectable in week 3, 

and the lucerne-hay carbon source had the highest 

Chlorophyta (1.54 indsL-1) and Ochrophyta (1.55 

indsL-1) peak, while the control had the lowest 

(Figures 7 and 8). 

Table 4. Phytoplankton abundance (log10(x+1) (x̄ ± SE) at different treatments (wheat-bran, Rhodes-hay, maize-cob, maize-

stables, and lucerne-hay) and control in the flocponic experiment.  

Phytoplankton Wheat-bran Rhodes-hay Maize-cob 
Maize-

stables 

Lucerne-

hay 
Control 

F-

value 

p-

value 

Charophyta 

(indsL-1) 

1.34±0.02a 1.38±0.02a 1.40±0.02a 1.21±0.05b 1.45±0.02c 1.15±0.04b 16.30 0.0001 

Chlorophyta 

(indsL-1) 

1.46±0.013a 1.49±0.016a 1.33±0.034b 1.26±0.02b 1.60±0.02c 1.34±0.02b 36.59 0.0001 

Ochrophyta 

(indsL-1) 

1.41±0.03a 1.56±0.02a 1.32±0.04b 1.39±0.02c 1.64±0.03d 1.30±0.04e 9.54 0.0001 

Note: Each value represents mean ± SE; Values with varied superscript (a, b, c, d, e) within the same row are significantly 

different (p<0.05) and indsL-1= individuals per litre. 
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Table 5. Phytoplankton diversity and abundance at different treatments (wheat-bran, Rhodes-hay, maize-cob, maize-stables, and 

lucerne-hay) and control in the flocponic experiment. Note: √ (present); × (absent). 

Phytoplankton Wheat-bran Rhodes-hay Maize-cob Maize-stables Lucerne-hay Control 

Ochrophyta       

Fragilaria √ √ √ √ √ √ 

Pediastrum × × √ × × × 

Chlorophyta       

Chlorella √ √ × √ √ × 

Cladophora √ √ × × √ × 

Protococcus √ √ √ √ √ √ 

Spirogyra √ √ × × √ × 

Spirotaenia √ √ × √ √ × 

Volvox √ √ √ × √ × 

Charophyta       

Cosmarium √ √ × × √ × 

Mougeotia √ √ × × √ √ 

Penium √ √ √ √ √ × 

Zygnema √ √ √ √ √ √ 

Closterium × √ × × √ × 

Desmidium × √ √ × √ × 

Coleastrum × × √ × × × 

Taxa_S 11 13 8 6 13 4 

Dominance_ D 0.097 0.115 0.143 0.172 0.091 0.257 

Shannon_H 2.363 2.304 2.007 1.776 2.475 1.373 

 

 

Figure 6. Variation of Charophyta in the flocponic experiment at different treatments (carbon sources) (wheat-bran, Rhodes-

hay, maize-cob, maize-stables, and lucerne-hay) and control. 
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Figure 7. Variation of Chlorophyta in the flocponic experiment at different (carbon sources) treatments (wheat-bran, Rhodes-

hay, maize-cob, maize-stables, and lucerne-hay) and control. 

 

Figure 8. Variation of Ochrophyta in the flocponic experiment at different (carbon sources) treatments (wheat-bran, Rhodes-

hay, maize-cob, maize-stables, and lucerne-hay) and control. 
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Spirotaenia), and Ochrophyta (Fragilaria) 

phytoplankton. The maize-hay treatment with 

TDS and salinity provided good conditions only 

for the Charophyta (Penium) phytoplankton. 

Control with dissolved oxygen had a positive 

relationship with the Chlorophyta (Protococcus) 

and Charophyta (Mougeotia) groups of 

phytoplankton in a good way (Figure 9). 

 

Figure 9. Triplot CCA relationships between treatments (wheat-bran, Rhodes-hay, maize-cob, and maize-stables carbon 

sources), control environmental variables, and phytoplankton groups. 

Discussion  

Water quality parameters 

The temperature, salinity, and dissolved oxygen 

(DO) were consistent across the treatments and 

control throughout the study. Our results concur 

with Roy et al. (2010), Naik and Reddy (2020), 

Mansour et al. (2022), and Sharawy et al. (2022) 

findings on the farming of L. vannamei in biofloc 

systems. Hassan et al. (2022) found the same 

results for temperature (24-28oC), pH (6.4-8.6), 

and DO (4.5 mg/l) when using sugarcane bagasse, 

rice bran, and rice straw as carbon sources in a 

biofloc system to grow Litopenaeus vannamei 

post-larvae. The current study also revealed slight 

differences in the dissolved oxygen (DO) levels 

between flocponic treatments with and without 

carbon sources, potentially due to the constant 

aeration of the flocponic system. Furthermore, the 

temperature recorded in this study was within the 

ideal range for biofloc and hydroponic production 

(Hostins et al., 2015; Deswati et al., 2021; 

Khanjani et al., 2021). During the experimental 

period, the consistent temperature in the 

greenhouse could have led to this phenomenon. 

The lower pH in the treatments, unlike in the 

control, could be attributed to the higher carbon 

dioxide concentration from the respiration of 

microorganisms in flocponic treatments with 

carbon sources. The floc biomass could also 

consume oxygen and release carbon dioxide, 

leading to low pH due to the synthesis of carbonic 

acid. Xu et al. (2016) found that the carbon 

dioxide levels in the carbon-based biofloc 

treatments, originating from heterotrophic 

organism respirations, likely cause the dynamic 

changes in pH in the biofloc system. The current 

result corroborates Solima and Mohsen's (2022) 

findings that carbon treatments lower the pH 

levels in biofloc-based ponds. However, the 

current study was conducted in a flocponic 

system, but the findings could be similar since 

flocponic integrates the concept of biofloc 

technology. 

Fish excrete total ammonia nitrogen via feces, 

urine, uneaten feed, the decomposition of debris, 

and plankton. During the experimental period, 

ammonia levels (0.01 to 0.03 mg/l) were within 

the ranges required for culturing Nile tilapia 

species. The ammonia levels in the carbon-based 
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treatments were lower than in the control. The 

dynamic changes in ammonia were found in 

treatments and control over time. The reduced 

ammonia levels in the flocponic treatments are 

likely attributed to microorganisms, such as 

ammonia-oxidizing bacteria, which utilize carbon 

as an energy source to transform ammonia into 

nitrite and proteins and facilitate the 

decomposition of organic matter. Correia et al. 

(2014) and Khanjani et al. (2021) indicated that 

ammonia and nitrite-oxidizing bacteria reduced 

NH3 and nitrite in the biofloc carbon-based system 

compared to the control pond unit. Deng et al. 

(2018) and Soliman and Mohsen (2022) reported 

that the organic carbon in a biofloc technology-

based system increased the number and diversity 

of microbial communities, particularly ammonia-

oxidizing bacteria, reducing the ammonia 

concentration. 

Furthermore, flocponics with carbon sources 

detected changes in ammonia over time. The 

lucerne-hay carbon source had the lowest 

ammonia level compared to other carbon sources. 

The solubility and composition of the carbon 

sources, which offer varying energy levels and 

surface areas necessary for bacterial development, 

could potentially explain the anomaly. Therefore, 

both the number and variety of microbes increase, 

promoting the process of dynamic ammonia 

conversion. However, there is a scarcity of 

investigations conducted specifically in the 

flocponic system. The addition of a carbon source 

in the biofloc system resulted in a significant 

increase in the growth of heterotrophic bacteria, 

thereby preventing the rise of ammonia levels 

(Deswati et al., 2021; Hassan et al., 2022; Soliman 

& Mohsen, 2022). Khanjani et al. (2021) also 

found that NH3 levels decreased more when using 

simple carbohydrates such as molasses in a 

biofloc system. The faster reduction of ammonia 

using simple carbon sources is probably due to the 

better absorption and degradation of carbon as a 

substrate for heterotrophic bacteria that 

metabolize ammonia, thus improving water 

quality (Khanjani et al., 2021). 

Nitrite is a vital water pollutant owing to its high 

toxicity (Pérez-Rostro et al., 2014). The primary 

harmful effects of NO2 directly affect oxygen 

transport, the oxidation of essential chemicals, and 

tissue destruction (Crab et al., 2012). Our results 

revealed lower nitrite levels in flocponic 

treatments with carbon sources compared to the 

control, and this could be attributed to the 

bacteria's efficient conversion of ammonia and the 

rapid pace of nitrification.  Ebeling et al. (2006) 

reported that the primary factor responsible for 

reducing NO2-N levels in biofloc systems is the 

conversion of ammonia by bacteria within the 

culture unit, which can also happen in flocponic 

systems of the present study. Hassan et al. (2022) 

showed similar nitrite levels on the rice bran and 

rice straw on Litopenaeus vannamei post-larvae in 

the biofloc system. However, different carbon 

treatments recorded different nitrite levels; the 

lucerne-hay exhibited low levels, possibly due to 

organic carbon's absorption and degradation 

efficiency as a substrate for a microorganism that 

fastens the nitrification process.  

Nitrate results from the nitrification process, and 

while it is one of the less hazardous inorganic 

nitrogen compounds, it can become a concern if 

its levels become too high and buildup (Mallasen 

& Valenti, 2006). In addition, nitrate boosts 

plankton production and growth (Middelburg & 

Nieuwenhuize, 2000). Thus, nitrate was 

significantly higher in the treatments compared 

with the control. Lucerne-hay exhibited a higher 

nitrate concentration but was within the 

acceptable range for Nile tilapia culture. Bacteria 

in flocponic treatments could have contributed to 

dynamic changes in nitrate levels compared to the 

control. These bacteria could have also facilitated 

successive ammonia oxidation to nitrite and, 

subsequently, to nitrate. 

Aquaculture relies on phosphorus as the primary 

ingredient for aquatic organisms and plankton 

growth (Sugiura et al., 2006). The treatments' 

soluble reactive phosphorus (SRP) levels were 

slightly higher than in the control. The higher SRP 

might mean that carbon sources have influenced 

soluble reactive phosphorus. Butz and Ven-

cappell (1982), Kibria et al. (1997), and Kong et 

al. (2020) also believe that fish feed ingredients 

contain a significant phosphorus fraction in a 

labile form; namely, the total phosphorus in fish 

feed, the more water-soluble phosphorus. The 

lucerne-hay carbon product had the highest levels 

of soluble reactive phosphorus compared to other 

carbon products and control. The lucerne-hay 

carbon's nature and simple sugars could have 
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stimulated the growth of more microbes, thereby 

aiding in the mineralization and production of 

SRP. Further, the high number of microorganisms 

in treatments could have facilitated the 

mineralization of organic carbon, waste, and solid 

particles into phosphorus. Ruzzi and Aroca (2015) 

and Brunno and Kevin (2016) reported that 

microorganisms in biofloc enhance phosphorus 

(P) availability by mineralizing organic matter and 

solubilizing precipitated phosphates in the culture 

system. Pinho et al. (2017) also indicated that 

microorganisms and planktonic communities are 

essential in biofloc systems as they mineralize 

nutrients into various elements. 

Effect of different organic carbon sources on 

phytoplankton diversity and Abundance in the 

flocponic system  

In the flocponic system, flocs aggregate that grow 

in the system are the main drivers for various 

activities. The phytoplankton and zooplankton are 

some of the complex living organism that 

metabolize nitrogenous waste from fish waste, 

uneaten feed, and debris (Castro-Mejía et al., 

2017). Although plankton is a component of floc 

aggregates in biofloc systems, no published 

studies have examined their dynamic nature in 

flocponic setups. Generally, the planktonic 

community is essential in biofloc and aquaponic 

systems, as they mineralize nutrients and serve as 

natural food for the farmed fish species and other 

organisms (Green et al., 2014). The current study 

demonstrates that phytoplankton populations in 

all flocponic systems undergo temporal changes 

regardless of carbon source treatments and 

control. The characteristics of the organic carbon 

supply, including its type, solubility, and 

composition, could have influenced water's 

physical and chemical properties, resulting in 

fluctuating variations in phytoplankton 

populations over time. Biological conditions such 

as competition and predation could also have 

contributed to this phenomenon. The same is 

reported by Green et al. (2014) and Castro-Mejía 

et al. (2017), who stated that plankton's abundance 

changes in response to physical-chemical 

parameters and predators' effects. 

During the experimental period, phytoplankton 

dominance in all flocponic systems consisted of 

Chlorophyta, Charophyta, and Ochrophyta. A 

higher abundance of Chlorophyta, Charophyta, 

and Ochrophyta corroborates Maica et al. (2011) 

and Pinho et al. (2017) with O. niloticus and L. 

vannamei species, respectively, but contrasts with 

results reported by Monroy-Dosta et al. (2013) in 

the culture of Nile tilapia in a biofloc system. The 

high levels of nitrate and soluble reactive 

phosphorus in the flocponic system with the 

lucerne-hay carbon product and its ability to break 

down may have elevated the diversity and 

abundance of phytoplankton growth over time. 

Sumitro (2021) and Soedibya et al. (2022) 

indicated that high N, P, and K levels stimulated 

phytoplankton growth in the biofloc system. 

Pinho et al. (2017) also discovered that the 

availability of nutrients and the greenhouse's 

sunlight exposure could cause high levels of 

Chlorophyta, Charophyta, and Ochrophyta. 

Emerenciano et al. (2013) indicated that 

phytoplankton grows well at high nitrogen and 

phosphorus concentrations. Such a dynamic 

driver might play similar functions in the 

flocponic system. The high ammonia 

concentration and absence of carbon in the control 

could have contributed to phytoplankton's low 

abundance and diversity. The concentration of 

water nutrients could have also contributed to the 

phenomenon. According to Schmittou and Rosati 

(1991) and Soedibya et al. (2022), a level of 

ammonia concentration that is more than 0.3 mg/l 

disturbs the absorption of nutrients by 

phytoplankton, hence hampered growth. 

Nevertheless, there is a lack of study on the effects 

of agricultural by-products as carbon sources on 

the makeup of plankton populations in flocponic 

systems or any other aquaculture system. 

According to Canonical Correspondence Analysis 

(CCA), there was a close correlation between 

carbon sources, water quality parameters, and 

phytoplankton groups. These results corroborate 

with other studies, which indicated that the abiotic 

environment affects bacteria and plankton 

community structure in the aquatic environment 

(Xue et al., 2021). Zhan et al. (2016) 

demonstrated that abiotic environmental factors, 

such as total ammonia nitrogen and total nitrate, 

significantly influence bacterial populations in L. 

vannamei culture in ponds. The addition of carbon 

to the flocponic system alters various ecological 

factors.  For example, wheat-bran, Rhodes-hay, 
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maize-cob, maize-stables, and lucerne-hay carbon 

sources exhibited higher nitrate and phosphorus 

levels than the control. These dynamic changes in 

water nutrients and carbon source composition 

over time could have influenced the relationship 

between phytoplankton groups, environmental 

variables (water parameters), treatments, and the 

control. The CCA results indicated that carbon 

sources and water parameters influenced the 

phytoplankton groups, which differed among the 

five treatment types. There was a positive 

relationship between phytoplankton, carbon 

sources, and water parameters. All the carbon 

sources and other water nutrients, particularly 

nitrate, DO, nitrite, ammonia, and phosphorus, 

exhibited positive relationships with 

phytoplankton. Lucia et al. (2014) indicated that 

carbon and water nutrients are essential for 

controlling bacterioplankton. Our findings 

showed that water parameters, particularly nitrate, 

phosphorus, nitrite, ammonia, temperature, and 

carbon products in flocponic systems, are critical 

factors affecting phytoplankton community 

composition. 

Conclusion/Recommendation 

Water quality parameters such as ammonia, 

nitrite, and nitrate in the carbon-based flocponics 

were within the optimal range for the composition 

of the phytoplankton community. The abundance 

and diversity of phytoplankton significantly 

improved in carbon-based flocponics. The 

lucerne-hay and wheat-bran carbon products 

exhibited the highest diversity and abundance of 

phytoplankton. The lucerne-hay proved to be a 

superior carbon source due to the improved water 

quality and phytoplankton community 

composition in the flocponic system. The lucerne-

hay carbon source might be rich in bacterial 

energy components crucial for water quality, 

culture species, and the phytoplankton 

community. The richness of lucerne-hay's 

bacterial energy components suggested a viable 

carbon source for flocponic systems and 

aquaculture practices. Further research should 

examine the impact of organic carbon sources on 

the dynamics of zooplankton composition in a 

flocponic system. 
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